Prototypes with Multiple Dispatch - Outline

1. Object-Oriented Programming

2. The Design Space

3. A Scenario

4. The Problem(s)

5. Multiple Dispatch

6. Prototypes

7. PMD

Object-Oriented Programming

e Data as “objects’: state with an identity

e ODbjects perform abstract “methods” to ma-
nipulate their state

e Objects compose with or “inherit” other
objects

e Programs are stories about objects instead
of recipes about bits

The Object-Oriented Design Space: More Com-
plex Than It Seems

first—person: third—person omniscient?
prototype—based PMD
. A A
internal
object—oriented
external)\ q
third—person limited: third—person objective:
class—based multi-methods
local global

A “Simple"” Scenario: Deep Sea Encounters

state object method

|

Healthy Sharks eat any Fish they encounter

Healthy Sharks fight any Sharks they encounter

Fish swim away from Healthy Sharks they encounter
Injured Sharks also swim away from Healthy Sharks

] |

state object method

Mainstream OO Is Not Expressive Enough

class: Fish
method: encounter object
if object is in class Shark
and object has state Healthy
then swim away
class: Shark
inherit: Fish
state: Healthy or Injured
method: fight object
set state to Injured
method: encounter object
if self has state Healthy
then
if object is in class Shark
then fight object
otherwise
if object is in class Fish
then eat object
otherwise
if self has state Injured
and object is in class Shark
and object has state Healthy
then swim away

A Brittle Program Structure

class Shark

What Went Wrong?

1. The programmer’s view is too local... make
it globall

2. The programmer’s view is too external...
internalize it!

Multiple Dispatch: A Global View

class: Fish
class: Shark
inherit: Fish
state: Injured or Healthy
method: fish:Fish encounter shark:Shark
if shark has state Healthy
then fish swim away
method: shark:Shark encounter fish:Fish
if shark has state Healthy
then shark eat fish
method: shark:Shark fight other shark:Shark
set shark state to Injured
method: shark:Shark encounter other shark:Shark
if shark has state Healthy
then shark fight other shark
otherwise
if shark has state Injured
then shark swim away

Multiple Dispatch: What Happened?

class Shark

Prototypes: An Internal View

object: Fish
method: encounter object
if object same as Shark
and object delegates to HealthyShark
then swim away
object: Shark
delegate to: Fish
object: HealthyShark
method: fight object
replace HealthyShark on self with InjuredShark
method: encounter object
if object is same as Shark
then fight object
otherwise
if object is same as Fish
then eat object
object: InjuredShark

10

Prototypes: What Happened?

delegation

11

Why Not Combine The Two?

e Multiple Dispatch exploits global knowledge

e Prototypes exploit internalized concepts

12

But Why Can’'t We?

e No formal basis for combining them yet

e Multiple Dispatch depends on classes and
global order of methods to work

e Prototypes depend on restricted local view
for internal representation to work

e Past attempts merely relabel classes as ob-
jects and restrict usage to fake it

13

. Not Quite True: A Different Approach

Healthy Sharks eat any Fish they encounter

eater T food T
T consensus T
role ole context

Healthy Sharks fight any Sharks they encounter

aggressor T victim T

T CoNnsensus T context
role role

14

Prototypes with Multiple Dispatch: Roles in
Action

object: Fish

object: Shark
delegates to: Fish

object: HealthyShark

object: InjuredShark

method: innocent:Fish encounter threat:HealthyShark
innocent swim away

method: eater:HealthyShark encounter food:Fish
eater eat food

method: weaker:HealthyShark fight stronger:Shark
replace HealthyShark on weaker with InjuredShark

method: aggressor:HealthyShark encounter victim:Shark
aggressor fight victim

15

How Does It Work?

\context

CONSENSUS

16

Resolving Ambiguities: Ordering On The Fly

0

delegation

17

It Works In Theory

compose(C,v) = <U> | € applicable(S, s, v')

vl’eapplicable(S,s,E) (l =1lv Ta'nk(Sa L, s, J) < ’I“CLTLk:(S, lla S, U))
lookup(S,C,s,v)=l

VosiSn (order(S,vi)=(do,---,dm)/\EIOSaSm (S[da]:< <E> ,{F},e>/\<s,i,l>€{?}))
leapplicable(S,s,v0, ,vn)

I€applicable(S,s,vo, ", vn)

order (S, v;) = (do, -+ ,dm) A\
rank(S’,l,s,vo,---,vn)=H0<i<n min{ 0<k<m| § [dk] =< <dl>) {F} e > A
o < 8,1, >€ {7}

18

It Works in Practice

® Dispatch algorithm fits on a slide with room to spare

dispatch(selector, args, n)
for each index below n
position := 0
push args[index] on ordering stack
while ordering stack is not empty

arg := pop ordering stack
for each role on arg with selector and index
rank[role’s method] [index] := position

if rank[role’s method] is fully specified
if no most specific method
or rank[role’s method] < rank[most specific method]
most specific method := role’s method
for each delegation on arg
push delegation on ordering stack
position := position + 1
return most specific method

® Implemented in the programming language Slate

_@True not [Falsel].

_QFalse not [True].

_@True /\ _@True [Truel].

_@(Boolean traits) /\ _@(Boolean traits) [False].
_Q@False \/ _@False [Falsel].

_@(Boolean traits) \/ _@(Boolean traits) [True].

19

Conclusion

e PMD unifies two disparate language paradigms:
prototypes and multiple dispatch

e Gives object-oriented programmers new, prac-
tical tool to think about and write pro-
grams in

20

