
The Slate Programmer’s Reference
Manual

Brian Rice and Lee Salzman

22nd October 2002

Contents

1 Introduction 3

2 Language Reference 3
2.1 Objects . 3

2.1.1 Block Closures . 4
2.1.2 Slot Properties . 5

2.2 Expressions . 6
2.2.1 Unary message-sends 6
2.2.2 Binary message-sends 7
2.2.3 Keyword message-sends 7
2.2.4 Expression sequences 8
2.2.5 Implicit-context sends 8

2.3 Methods . 9
2.3.1 Method declarations 9
2.3.2 Lookup semantics . 10
2.3.3 Resending messages or dispatch-overriding 11
2.3.4 Type-annotations . 12
2.3.5 Macro-level Methods 12
2.3.6 Primitive Methods . 14

2.4 Literal Syntax . 14
2.4.1 Characters . 14
2.4.2 Strings . 14
2.4.3 Symbols . 15
2.4.4 Arrays . 15

3 The Slate World 15
3.1 Overall Organization . 15

3.1.1 The lobby . 15
3.1.2 Naming and Paths . 16

3.2 Core Behaviors . 16
3.2.1 Default Object Features 17

1

3.2.2 Oddballs . 17
3.3 Traits . 17
3.4 Closures, Booleans, and Control Structures 18

3.4.1 Boolean Logic . 18
3.4.2 Basic Conditional Evaluation 18
3.4.3 Looping . 19

3.5 Numeric Objects . 20
3.6 Collections . 21

3.6.1 Extensible Collections 22
3.6.2 Sequences . 22
3.6.3 Strings and Characters 23
3.6.4 Collections without Duplicates 23
3.6.5 Mappings and Dictionaries 23
3.6.6 Trees . 24
3.6.7 Vectors and Matrices 24

3.7 Streams and External Iterators 24
3.7.1 Basic Protocol . 24
3.7.2 Basic Stream Variants 25
3.7.3 Standard Input/Output 25
3.7.4 Collection Iterator Streams 25

3.8 Files . 25
3.9 Types . 26

4 Style Guide 27
4.1 Environment Organisation 27
4.2 Instance-specific Dispatch 27
4.3 Mini-interpreters Using Macros 27

References 27

2

1 Introduction

Slate is a member of the Smalltalk family of languages which supports
an object model in a similar prototype-based style as Self[2], extended
and re-shaped to support multiple-dispatch methods. However, un-
like Self, Slate does not rely on a literal syntax that combines objects
and blocks, using syntax more akin to traditional Smalltalk. Unlike a
previous attempt at providing prototype-based languages with multi-
ple dispatch, Slate is dynamic and more free-form. It is intended that
both Smalltalk and Self styles of programs can be ported to Slate with
minimal effort. Finally, Slate contains extensions including syntactic
macros, optional keywords, optional type-declarations and subjective
dispatch, that can be used to make existing programs and environ-
ment organizations more powerful.

Slate is currently implemented as an interpreter written in Common
Lisp, which loads source files to build a full environment. A complete
bootstrap is under development, which will involve many of the opti-
mizations of the Self system.

Conventions Throughout this manual, various terms will be high-
lighted in different ways to indicate the type of their significance. If
some concept is a certain programming utility in Slate with a definite
implementation, it will be formatted in a typewriter-style. If a term
is technical with a consistent definition in Slate, but cannot have a def-
inite implementation, it will be set in SMALL CAPITAL LETTERS. Finally,
just emphasis is denoted by italics. Finally, when expression/result
patterns are entered, typewriter-style text will be used with a Slate>
prompt before the statement and its result will be set in italicized
typewritten text below the line.

Finally, many of the examples assume that the full standard library
set has been loaded, or at least the fundamental set. To perform this,
execute ’src/init.slate’ fileIn. when the interpreter is running.
Additional libraries can be loaded with a similar syntax.

2 Language Reference

2.1 Objects

OBJECTS are fundamental in Slate; everything in a running Slate sys-
tem consists of objects. Slate objects consist of a number of slots and
roles: slots are mappings from symbols to other objects, and roles are
a means of organizing code that can act on the object. Slots themselves
are accessed and updated by a kind of message-send which is not dis-
tinguishable from other message-sends syntactically, but have some
important differences.

3

Objects in Slate are created by cloning existing objects, rather than
instantiating a class. When an object is cloned, the created object has
the same slots and values as the original one. The new object will also
have the access and update methods for those slots carried over to
the new object, but other methods will not propagate due to reasons
explained in section 2.3 on Methods.

Both control flow and methods are implemented by specialized ob-
jects called blocks, which are code closures. These code closures con-
tain their own slots and create activation objects to handle run-time
context when invoked. They can also be stored in slots and sent their
own kinds of messages.

2.1.1 Block Closures

A block closure represents an encapsulable context of execution, con-
taining local variables, input variables, the capability to execute expres-
sions sequentially, and finally returns a value to its point of invocation.

Block closures have a special syntax for building them up syntacti-
cally. Blocks can specify input slots and local slots in a header between
vertical bars (||), and then a sequence of expressions which comprises
the block’s body. Block expressions are delimited by square brackets.
The input syntax allows you to specify the slot names desired at the
beginning. For example,

Slate> [| :i j k | j: 4. k: 5. j + k - i].
[]

creates and returns a new block. Within the header, identifiers that
begin with a colon such as :i above are parsed as input slots. The
order in which they are specified is the order that arguments matching
them must be passed in later to evaluate the block. If the block is
evaluated later, it will return the expression after the final stop (the
period) within the brackets, j + k - i. In this block, i is an input
slot, and j and k are local slots which are assigned to and then used
in a following expression. The order of specifying the mix of input and
local slots does not affect the semantics, but the order of the input
slots directly determines what order arguments need to be passed to
the block to assign them to the correct slots.

In order to invoke a block, the client must know how many and in
what order it takes input arguments. Arguments are passed in using
one of several messages. By evaluating these messages, the block is
immediately evaluated, and the result of the evaluation is the block’s
execution result.

Blocks that don’t expect any inputs respond to value, as follows:

Slate> [| a b | a: 4. b: 5. a + b] value.
9

4

Blocks that take one, two, or three inputs, each have special messages
value:, value:value:, and value:value:value: which pass in the
inputs in the order they were declared in the block header. Every block
responds properly to values: however, which takes an array of the
input values as its other argument.

Slate> [| :x :y | x quo: y] value: 17 value: 5.
3
Slate> [| :a :b :c | (b raisedTo: 2) -
(4 * a * c)]
values: {3. 4. 5}.

-44

If a block is empty, or contains an empty body, it returns Nil when
evaluated:

Slate> [] value.
Nil
Slate> [| :a :b |] values: {0. 2}.
Nil

Blocks furthermore have the property that, although they are a piece of
code and the values they access may change between defining the clo-
sure and invoking it, the code will “remember” what objects it depends
on, regardless of what context it may be passed to as a slot value. This
is critical for implementing good control structures in Slate, as is ex-
plained later. Basically a block is an activation frame composed with
an environment that can be saved and invoked (perhaps multiple times)
long after it is created.

2.1.2 Slot Properties

Slots may be mutable or immutable, and explicit slots or delegation
slots. These four possibilities are covered by four primitive methods
defined on all objects.

Slate provides several primitive messages to manage slots:
object addSlot: slotSymbol adds a slot using the symbol as its

name, initialized to Nil.
object addSlot: slotSymbol valued: val adds a slot under the

given name and initializes its value to the given one.
object addDelegate: slotSymbol and object addDelegate: slot-

Symbol valued: val adds a delegation slot, and initializes it, respec-
tively. It is recommended to use the latter since delegation to Nil is
unsafe.

Each of the former has a variant which does not create a mu-
tator method for its slot: addImmutableSlot:valued: and addIm-
mutableDelegate:valued:.

5

2.2 Expressions

Expressions in Slate consist of message-sends to argument objects. In
Slate, the left-most argument is not considered the implicit receiver.
This can mostly be ignored when invoking methods, however.

An important issue is that every identifier is case-sensitive in Slate,
that is, there is a definite distinction between what AnObject, anob-
ject, and ANOBJECT denote even in the same context. Furthermore,
the current implementation is whitespace-sensitive as well, in the sense
that whitespace must be used to separate identifiers in order for them
to be considered separate. For example, ab+4 will be treated as one
identifier, but ab + 4 is a message-send expression.

There are three basic types of messages, with different syntaxes and
associativities: unary, binary, and keyword messages. Precedence can
of course be overridden by enclosing expressions in parentheses. An
implicit left-most argument can be used with all of them.

A concept that will be often used about message-sends is that of the
name of a message, its SELECTOR. This is the symbol used to refer to
the message or the name of a method that matches it. Slate uses three
styles of selectors, each with a unique but simple syntax.

2.2.1 Unary message-sends

A UNARY MESSAGE does not specify any additional arguments. It is
written as a name following a single argument.

Some examples of unary message-sends to explicit arguments in-
clude:

Slate> 42 print.
42
Slate> ’Slate’ clone.
’Slate’

Unary sends associate from left to right. So the following prints the
factorial of 5:

Slate> 5 factorial print.
120

Which works the same as:

Slate> (5 factorial) print.
120

Unary selectors can be most any alpha-numeric identifier, and are
identical lexically to ordinary identifiers of slot names. This is no coin-
cidence, since slots are accessed via a type of unary selector.

6

2.2.2 Binary message-sends

A BINARY MESSAGE is named by a special non-alphanumeric symbol
and ’sits between’ its two arguments. Binary messages are also evalu-
ated from left to right; there is no special precedence difference between
any two binary message-sends.

These examples illustrate the precedence and syntax:

Slate> 3 + 4.
7
Slate> 3 + 4 * 5.
35
Slate> (3 + 4) * 5.
35
Slate> 3 + (4 * 5).
23

Binary messages have lower precedence than unary messages. Without
any grouping notation, the following expression’s unary messages will
be evaluated first and then passed as arguments to the binary message:

Slate> 7 factorial + 3 negated.
5037
Slate> (7 factorial) + (3 negated).
5037

Binary selectors can consist of one or more of the following characters:

$ % ^ & * - + = ~ / \ ? < > , ;

However, these characters are reserved:

@ [] () { } . : ! | ‘

2.2.3 Keyword message-sends

A KEYWORD MESSAGE is an alternating sequence of keywords and ex-
pressions. Keywords are identifiers beginning with a letter and ending
with a colon. Keyword messages start with the left-most argument
along with the longest possible sequence of keyword-value pairs. The
SELECTOR of the message is the joining-together of all the keywords
into one symbol, which is the name of the message. For example,

Slate> 5 min: 4 max: 7.
7

is a keyword message-send named min:max: which has 3 arguments:
5, 4, and 7. However,

7

Slate> 5 min: (4 max: 7).
5

is a different kind of expression. Two keyword message-sends are
made, the first being max: sent to 4 and 7, and min: sent to 5 and
the first result.

Keywords have the lowest precedence of message-sends, so argu-
ments may be the results of unary or binary sends without explicit
grouping required. For example, in

Slate> 5 + 4 min: 7 factorial max: 8.
9
Slate> (5 + 4) min: (7 factorial) max: 8.
9

the former basically parses into the latter.

2.2.4 Expression sequences

Expressions occur between stop-marks, which are periods. At the top-
level, expressions aren’t evaluated until a full stop is entered. The stop
mark also means that expression results aren’t directly carried forward
as an argument to the following expression; side-effects must be used
to keep the results.

Slate provides for a bare expression sequence syntax that can be
embedded within any grouping parentheses, as follows:

Slate> 3 + 4.
7
Slate> (7 factorial. 5
negated) min: 6.

-5

The parentheses are used just as normal grouping, and as you’ll note,
the 5 negated expression wraps over a line, but still evaluates that
way. (We do not consider this expression good style, but it illustrates
the nature of the language.)

2.2.5 Implicit-context sends

Within methods, blocks, and even at the top-level, some expressions
may take the surrounding context as the first argument. There is a
precedence for the determination of which object becomes the first ar-
gument, which is entirely based on lexical scoping. So, within a block,
an implicit send will take the block’s run-time context as argument,
and then at lesser precedences will be the next outer contexts in se-
quence, up to the top-level and what it inherits from.

8

There are some very common uses of implicit-context sends. In
particular, accessing and modifying local variables of a block or method
is accomplished entirely this way, as well as returns. For example,

[| :i j k |
j: i factorial.
k: (j raisedTo: 4).
j < k ifTrue: [| m |

j: j - i. m: j. ^ (m raisedTo: 3)].
k: k - 4.
k

].

is a block which, when invoked, takes one argument and has another
two to manipulate. Notice that the local slot j is available within the
enclosed block that also has a further slot m. Local blocks may also
override the slots of their outer contexts with their input and local slots.
In this case, the identifiers j and j:, for example, are automatically-
generated accessing and update methods on the context. Because j:
is a keyword message, if the assigned value is a keyword message-send
result, it must be enclosed in parentheses to distinguish the keyword
pattern. The ^ (m raisedTo: 3) message causes the context to exit
prematurely, returning as its value the result of the right-hand argu-
ment. All methods have this method defined on them, and it will return
out to the nearest named block or to the top-level.

In some cases, it may be necessary to manipulate the context in
particular ways. In that case, it can be directly addressed with a loop-
back slot named thisContext, which refers to the current activation.
The essence of this concept is that within a block, x: 4. is equivalent
to thisContext x: 4.1

2.3 Methods

METHODS in Slate are basically annotated block closures, coupled with
annotations of the objects roles that dispatch to them.

2.3.1 Method declarations

Method declaration syntax is handled relatively separately from nor-
mal precedence and grammar. It essentially revolves around the use
of the reserved character “@”. If any identifier in a message-send is
found to contain the character, the rest of the same send is examined

1The current named method as distinct from the context is available as current-
Method, and its name is available as selector. However, these are dependent on the
current implementation of Slate, and so may not be available in the future.

9

for other instances of the symbol. The parser then treats the expres-
sion or identifier to the right of the @ character as a dispatch target for
that argument position. After the message-send, there is expected a
block expression of some kind, whether a literal or an existing block.
Whichever is specified, the parser creates a new block out of it with
adjustments so that the identifiers in the dispatching message-send
become input slots in the closure. The block should be the final ex-
pression encountered before the next stop (a period).

There is a further allowance that an input slotname specifier may
be solely an underscore (but not an underscore followed by anything
else), in which case the argument to the method at that position is not
passed in to the block closure.

This syntax is much simpler to recognize and create than to explain.
For example, the following are a series of message definitions adding to
boolean control of evaluation:

_@True ifTrue: block ifFalse: _ [block value].
_@False ifTrue: _ ifFalse: block [block value].

bool@(Boolean traits) ifTrue: block
"Some sugaring for ifTrue:ifFalse:."
[

bool ifTrue: block ifFalse: []
].

The first two represent good uses of dispatching on a particular individ-
ual object (dispatching the ignored symbol “_” to True and False, re-
spectively) as well as the syntax for disregarding its value. Within their
blocks, block refers to the named argument to the method. What’s
hidden is that the block given as the code is re-written to include
those arguments as inputs in the header. The latter method is de-
fined in terms of the first two, since True and False both delegate to
Boolean traits.

2.3.2 Lookup semantics

Message lookup in Slate involves all arguments in concert. Each ob-
ject contains a table separate from its slot table that contain dispatch
annotations per ROLE. An object’s roles are its set of possible positions
within a method that is defined upon it.

Object slots which are designated as delegate slots will be traversed
recursively to continue the lookup process if the object does not define
a method which matches the message’s signature.

The lookup process involves searching the role dictionary of each
argument and their delegates in turn to first find selectors matching

10

the message. These sets of methods found from each of the role dictio-
naries are then intersected to provide a filtered set of applicable meth-
ods. This final set visits each argument from left to right, determining
whether the argument object does not support the method. If one of
them doesn’t support the method, the next method is searched in a
similar way. Otherwise, the method is immediately applied. If none
of the methods were applicable, then each of the arguments’ delegates
are considered in turn. Finally, when the delegates are exhausted, an
error is reported.

There are two definite orderings that are important to consider.
First, the arguments are more significant to the dispatch on the left
than to the right. So of two applicable methods, the one that matches
the left-to-right order first is the one that is applied. Second, delegate
slots that are searched in the reverse order that they were added: more
recent additions override older delegates for the same object.

Finally, this procedure of matching messages with methods is con-
venient in that omitting a dispatch annotation because it is not neces-
sary results in no change in the semantics of the method or whether
or not it is applicable. Moreover, a sparser use of dispatch annota-
tions means that fewer methods need to be collated during the lookup
process, which generally means that the process will be faster.

So the recommended style of using dispatch annotations is minimal-
ist, which helps for genericity and for one performance aspect. This
also allows for a smooth transition from single-dispatch use without
any conceptual or otherwise penalty.

2.3.3 Resending messages or dispatch-overriding

Because Slate’s methods are not centered around any particular argu-
ment, the resending of messages is formulated in terms of giving the
method activation itself a message. The simplest type of resend is re-
send, which finds the next most-applicable method and invokes it with
the exact same set of arguments. The result of resend is the returned
result of that method.

� methodName findOn: argumentArray locates the method for the
given symbol name and group of argument objects.

� methodName findOn: argumentArray after: aMethod locates
the method following the given one with the same type of argu-
ments as above.

� methodName sendTo: argumentArray is an explicit application
of a method, useful when the symbol name of the method needs
to be provided at run-time.

11

� sendWith:, sendWith:with: and sendWith:with:with: take
one, two, and three arguments respectively as above without cre-
ating an array to pass the arguments in.

� methodName sendTo: argumentArray through: dispatchArray
is an extra option to specify a different signature for the method
than that of the actual argument objects.

2.3.4 Type-annotations

Input and local slots’ types can be specified statically for performance
or documentation reasons, if desired. The special character “!” is
used in the same manner as the dispatch annotation “@”, but type-
annotations can only occur within a block closure’s header. The type
system and inference system in Slate is part of the standard library,
and so is explained later.

2.3.5 Macro-level Methods

The ‘ special character Preceding any selector with a back-tick (‘)
will cause it to be applied to the parsed pre-evaluated form of its argu-
ments. This provides access to syntax-level methods at run-time and
compile-time.

Slate’s parser produces syntax trees which are trees of objects with
various attributes, so there is some difference from the Lisp family
of languages in that simple lists are not the limit of the expression’s
parsed format.

Quoting and unquoting A few of the macro-methods we have found
appropriate already are ‘quote and ‘unquote, which pass as their
run-time result the syntax-level shifted versions of their expressions.

‘quote causes the surrounding expression to use its quoted value
as the input for even normal methods.

‘unquote results in an inversion of the action of ‘quote, so it can
only be provided within quoted expressions. Lisp macro system users
will note that this effectively makes ‘quote the same as quasi-quotation.

2

Labelled quotation In experience with Lisp macros, nested quotation
is often found necessary. In order to adequately control this, often the
quotation prefix symbols have to be combined in non-intuitive ways
to produce the correct code. Slate includes, as an alternative, two

2We may also provide these as ‘up and ‘down, respectively, if there is enough demand
for it, and it is not too confusing.

12

operations which set a label on a quotation and can unquote within
that to the original quotation by means of referencing the label.

Most users need time to develop the understanding of the need for
higher-order macros, and this relates to users who employ them. For
reference, a Lisp book which covers the subject of higher-order macros
better than any other is On Lisp. Although it’s also been said that Lisp’s
notation and the conceptual overhead required to manage the notation
in higher-order macros keeps programmers from entering the field, so
perhaps this new notation will help.

The operators are expr1 ‘quote: aLiteral and expr2 ‘unquote: aLit-
eral, and in order for this to work syntactically, the labels must be
equal in value and must be literals. As well, the unquoting expression
has to be a sub-expression of the quotation. The effect is that nesting
an expression more deeply does not require altering the quotation op-
erators to compensate, and it does indicate better what the unquoting
is intended to do.

Evaluation at compile-time ‘evaluate provides compile-time eval-
uation of arbitrary expressions.

Term or expression substitution (Not Yet Implemented) ‘with:as:
is a protocol for transparent substitution of temporary or locally-provided
proxies for environment values and other system elements. This should
provide an effective correspondent of the functionality of Lisp’s "with-"
style macros.

Defining new macro-methods Macros must be dispatched (if at all)
upon the traits of expressions’ syntactic representation. This intro-
duces a few difficulties, in that some familiarity is needed with the
parse node types in order to name them. However, only two things
need to be remembered:

1. The generic syntax node type is Compiler SyntaxNode traits,
and this is usually all that is necessary for basic macro-methods.

2. Syntax node types of various objects and specific expression types
can be had by simply quoting them and asking for their traits, al-
though this might be too specific in some cases. For example,
4 ‘quote traits is suitable for dispatching on Integers, but not
Numbers in general, or (3 + 4) ‘quote traits will help dis-
patch on binary message-sends, but not all message-sends. Luck-
ily, [] ‘quote traits works for blocks as well as methods.

13

2.3.6 Primitive Methods

Messages prefixed with the underscore character (_) are looked up in a
special table in the system for primitive methods.3

2.4 Literal Syntax

2.4.1 Characters

Slate’s default support for character literals uses the $ symbol as a
prefix. The following printable and non-printable characters require
backslash escapes as follows:

Character name Literal
Escape $\e
Newline $\n

Carriage return $\r
Tab $\t

Backspace $\b
Null $\0

Space $\s
Backslash $\\

All other symbols can be immediately be preceded by $ in order to
construct the Character object for them, for example,

$a, $3, $>, and $$
are all Character object literals for a, 3, >, and $, respectively.

2.4.2 Strings

Strings are comprised of any sequence of characters surrounded by
single-quote characters. Strings can include the commenting charac-
ter (double-quotes) without an escape. Embedded single-quotes can be
provided by using the backslash character to escape them (\’). Slate’s
character literal syntax also embeds into string literals, omitting the $
prefix. All characters that require escapes in character literal syntax
also require escapes when used within string literals, with the excep-
tion of double-quote marks and the addition of single-quote marks.

The following are all illustrative examples of Strings in Slate:

’a string comprises any sequence of charac-
ters, surrounded by single quotes’
’strings can include the "comment delimit-
ing" character’

3These are subject to change and should not concern the applications programmer
until the bootstrap is complete.

14

’and strings can include embedded sin-
gle quote characters by escaping\’ them’
’strings can contain embedded
newline characters’
’and escaped \ncharacters’
” "and don’t forget the empty string"

2.4.3 Symbols

Symbols start with the pound sign character (#) and consist of all fol-
lowing characters up to the next non-escaped whitespace, unless the
pound sign is followed exactly by a string literal, in which case the
string’s contents become the identifier for the symbol. So, for example,
#@, #key:word:expression:, #something_with_underscores, and
#’A full string with a \nnewline in it.’ are all valid symbols
and symbol literals.

A property of Symbols and their literals is that any literal with the
same value as another also refers to the same instance as any other
symbol literal with that value in a Slate system. This allows fast hashes
and comparisons by identity rather than value hashes. In particular,
as with Slate identifiers, a Symbol’s value is case-sensitive, so #a and
#A are distinct.

2.4.4 Arrays

Arrays can be literally and recursively specified by curly-brace notation
using stops as separators. Array indices in Slate are 0-based. So:

{4. 5. {foo. bar}}.

returns an array with 4 in position 0, 5 at 1, and an array with objects
foo and bar inserted into it at position 2.

Immediate array syntax is provided as an alternative to create the
array when the method is compiled, instead of creating a new array on
each method invocation. The syntax is identical except that the first
opening brace is preceded by the pound sign. The disadvantage is that
no run-time values will be usable.

3 The Slate World

3.1 Overall Organization

3.1.1 The lobby

The lobby is the root namespace object for the Slate object system. All
’global’ objects are really only globally accessible because the lobby is

15

delegated to by lexical contexts, directly or indirectly. The lobby in turn
may delegate to other namespaces which contain different categorized
objects of interest to the applications programmer, and this can be
altered at run-time.

Every object reference which is not local to a block closure is sent
to the enclosing namespace for resolution, which by default is the root
namespace, the lobby (nested closures refer first to their surrounding
closure). The lobby contains a loopback slot referring to itself by that
name. If you wish to add or arrange globals, you can use either implicit
sends to the lobby or explicitly reference it. (We usually consider it good
style to directly reference it.)

The lobby is essentially a threading context, and in the future boot-
strap will be instantiable in that sense.

3.1.2 Naming and Paths

The lobby provides access to the major Namespaces, which are objects
suitable for organizing things (for now, they are essentially just Odd-
ball objects). The most important one is prototypes, which contains
the major kinds of shared behavior used by the system. Objects there
may merely be cloned and used directly, but they should not them-
selves be manipulated without some design effort. prototypes is in-
herited by the lobby, so it is not necessary to use the namespace path
to identify, for example, Collection or Boolean. However, unless you
explicitly mention the path, adding slots will use the lobby or the local
context by default.

The prototypes namespace further contains inherited namespaces
for collections, and can be otherwise enhanced to divide up the system
into manageable pieces.

3.2 Core Behaviors

Slate defines several subtle variations on the core behavior of objects:

ROOT The "root" object, upon which all the very basic methods of slot
manipulation are defined.

ODDBALL The branch of Root representing non-cloneable objects. These
include built-in ’constants’ such as the Booleans, as well as liter-
als (value-objects) such as Characters and Symbols.

NIL Nil is an Oddball representing "no-object".

DERIVABLE Derivable objects respond to derive and deriveWith:,
which means they can be readily extended.

CLONEABLE Cloneable objects are derivables that can be cloned.

16

METHOD A Cloneable object with attributes for supporting execution
of blocks and holding compiled code and its attributes.

3.2.1 Default Object Features

Identity == and ~= return whether the two arguments are identical,
i.e. the same object. Value-equality (=) defaults to this.

Printing print returns a printed representation of the object. This
should be overridden. printOn: places the result of printing onto
a designated Stream.

Delegation-testing is: returns whether the first object has the sec-
ond as one of its delegated objects, directly or indirectly.

Hashing A quick way to sort by object value that makes collections
faster to sort through is the hash method, which by default hashes
on the object’s identity, essentially by its address in memory.
What’s more important about hashing is that this is how value-
equality is established for collections; if an object type overrides
=, it must also override hash so that a = b

�
a hash = b hash.

Conversion/coercion The as: method has a default implementation
on root objects. Essentially the purpose of the as: protocol is
to provide default conversion methods between types of objects in
Slate. Some primitive types, such as Numbers, override this. For
now, if no converter is found or if the objects are not of the same
type, the failure answer is Nil. Precisely, the behavior of a as: b
is to produce an object based on a which is as much like b as
possible.

Slot-enumeration For each object, the Symbols naming its slot and
delegate slots can be accessed and iterated over, using the acces-
sors slotNames and delegateNames, which work with the symbol
names of the slots, or the iterators slotsDo: and delegatesDo:,
which iterate over the stored values themselves.

3.2.2 Oddballs

There are various Oddballs in the system, and they are non-cloneable
in general. However, Oddball itself may be cloned, for extension pur-
poses.

3.3 Traits

Slate objects, from the root objects down, all respond to the message
traits, which is conceptually shared behavior but is not as binding
as a class is. It returns an object which is, by convention, the location

17

to place shared behavior. Most Slate method definitions are defined
upon some object’s Traits object. This is significant because cloning an
object with a traits delegation slot will result in a new object with the
same object delegated-to, so all methods defined on that traits object
apply to the new clone.

Traits objects also have their own traits object, which is Traits traits.
This has the important methods defined on it for deriving new proto-
types with new traits objects:

� myObject derive will return a new clone of the object with a
traits object which is cloned from the original’s traits object, and
a delegation slot set between the traits objects.

� myObject deriveWith: mixinsArray will perform the same op-
eration, adding more delegation links to the traits of the array’s
objects, in the given order, which achieves a structured, shared
behavior of multiple delegation. Note that the delegation link ad-
dition order makes the right-most delegation target override the
former ones in that order. One interesting property of this method
is that the elements of mixinsArray do not have to be Derivable.

3.4 Closures, Booleans, and Control Structures

3.4.1 Boolean Logic

Slate’s interpreter primitively provides the objects True and False,
which are clones of Boolean, and delegate to Boolean traits. Logical
methods are defined on these in a very minimalistic way.

Here are the logical methods and their meanings:

Description Selector
AND/Conjunction /\
OR/Disjunction \/
NOT/Negation not

EQV/Equivalence equiv:
XOR/Exclusive-OR xor:

3.4.2 Basic Conditional Evaluation

Blocks that evaluate logical expressions can be used lazily in other
logical expressions. For example,

(x < 3) and: [y > 7].

only evaluates the right-hand block argument if the first argument
turns out to be True.

18

(x < 3) or: [y > 7].

only evaluates the right-hand block argument if the first argument
turns out to be False.

In general, the basic of booleans to switch between code alternatives
is to use ifTrue:, ifFalse:, and ifTrue:ifFalse: for the various
combinations of binary branches. For example,

x isNegative ifTrue: [x: x negated].

ensures that x is positive by optionally executing code to make it pos-
itive if it’s not. Of course if only the result is desired, instead of just
the side-effect, the entire expression’s result will be the result of the
executed block, so that it can be embedded in further expressions.

Conditional evaluation can also be driven by whether or not a slot
has been initialized, or whether a method returns Nil. There are a few
options for conditionalizing on Nil:

� expr ifNil: block and expr ifNotNil: block execute their
blocks based on whether the expression evaluates to Nil, and re-
turns the result.

� expr ifNil: nilBlock ifNotNil: otherBlock provides both
options in one expression.

� expr ifNotNilDo: block applies the block to the expression’s
result if it turns out to be non-Nil, so the block given must accept
one argument.

3.4.3 Looping

Slate includes various idioms for constructing basic loops.

� n timesRepeat: block executes the block N times.

� condition whileTrue: block and condition whileFalse: block
execute their blocks repeatedly, checking the condition before each
iteration.

� a upTo: b do: block and b downTo: a do: block executes the
block with each number in turn from a to b.

� a below: b do: block and b above: a do: block act identi-
cally to the previous method except that they stop just before the
last value. This assists in iterating over array ranges, where the
0-based indexing makes a difference in range addresses by one,
avoiding excessive use of size - 1 calls.

19

Slate’s looping control structures can easily be extended without con-
cern due to the fact that the interpreter unrolls properly tail-recursive
blocks into low-level loop code that re-uses the same activation frame.
So basically structuring your custom looping code so that it calls itself
last within its own body and returns that value will ensure that you
don’t need increasing stack space per iteration.

3.5 Numeric Objects

All of the normal arithmetic operations (i.e. +, -, *, /) are supported
primitively between elements of the same type. Type coercion has
to be done entirely in code; no implicit coercions are performed by
the virtual machine. However, the standard library includes methods
which perform this coercion. The interpreter also transparently pro-
vides unlimited-size integers, although the bootstrapped system may
not do so implicitly.

The following are the rest of the primitive operations, given with an
indication of their "signatures":

� Float raisedTo: Float is simple floating-point exponentiation.

� Integer as: Float extends an integer into a float.

� Float as: Integer truncates a float.

� Integer bitOr: Integer performs bitwise logical OR.

� Integer bitXor: Integer performs bitwise logical XOR.

� Integer bitAnd: Integer performs bitwise logical AND.

� Integer bitShift: Integer performs bitwise logical right-shift
(left-shift if negative).

� Integer bitNot performs bitwise logical NOT.

� Integer >> Integer performs logical right-shift.

� Integer << Integer performs logical left-shift.

� Integer quo: Integer returns a quotient (integer division).

Many more useful methods are defined, such as mod:, reciprocal,
min:, max:, between:and:, lcm:, and gcd:. Slate also works with
Fractions when dividing Integers, keeping them lazily reduced.

20

3.6 Collections

Slate’s collection hierarchy makes use of multiple delegation to provide
a collection system that can be reasoned about with greater certainty,
and that can be extended more easily than other object-oriented lan-
guages’ collection types.

Figure 1 shows the overview of the collection types, and how their
delegation is patterned.

Figure 1: Core Collections Delegations

InsertionSequence

Mapping Collection

Bag

SequenceableCollection

NoDuplicatesCollection

Set

ExtensibleCollection

OrderedCollection ArrayedCollection

Array

StringDictionary

SortedCollection

All collections support a minimal set of methods, including support
for basic internal iteration and testing. The following are representative
core methods, and are by no means the limit of collection features:

Testing Methods:
� isEmpty answers whether or not the collection has any elements

in it.

� collection includes: object answers whether the collection
contains the object.

Properties
� size returns the number of elements in it. Sometimes this is

calculated dynamically, so it’s often useful to cache it in a method.

21

� capacity returns the size that the collection’s implementation is
currently ready for.

Making new collections

� newSize: returns a new collection of the same type that is sized
to the argument.

� newEmpty returns a new collection of the same type that is sized
to some small default value.

� as: alias newWithAll: has extensive support in the collection
types to produce copies of the first collection with the type of the
second.

Iterating

� col do: block executes a block with :each (the idiomatic input
slot for iterating) of the collection’s elements in turn. It returns
the original collection.

� col collect: block also takes a block, but returns a collection
with all the results of those block-applications put into a new col-
lection of the appropriate type.

� col select: block takes a block that returns a Boolean and
returns a new collection of the elements that the block filters (re-
turns True).

3.6.1 Extensible Collections

Collections delegating to ExtensibleCollection respond to add:, re-
move:, and other protocol messages based upon them, such as the
batch operations addAll: and removeAll:.

3.6.2 Sequences

Sequences (SequenceableCollection) are Mappings from a range of
natural numbers to some objects, sometimes restricted to a given type.
Slate sequences are all addressed from a base of 0.

To access and modify sequences, the basic methods seq at: index
and seq at: index put: object are provided.

Arrays Arrays are fixed-length sequences and are supported primi-
tively.

22

Subsequences / Slices Subsequences allow one to treat a segment
of a sequence as a separate sequence with its own addressing scheme;
however, modifying the subsequence will cause the original to be mod-
ified.

Cords Cords are a non-copying representation of a concatenation of
Sequences. Normal concatenation of Sequences is performed with the
; method, and results in copying both of the arguments into a new
Sequence of the appropriate type; the ;; method will construct a Cord
instead. They efficiently implement accessing via at: and iteration via
do:, and Cord as: SequenceableCollection will “flatten” the Cord
into a Sequence.

Ordered and Sorted Collections An OrderedCollection is an Ex-
tensible Sequence with some special methods to treat both ends as
queues.

Ranges A Range is a sequence of integers between two values, that is
ordered consecutively and has some stepping value.

3.6.3 Strings and Characters

Strings in Slate are Arrays of characters. Strings and characters have
a special literal syntax, and methods specific to dealing with text.

3.6.4 Collections without Duplicates

NoDuplicatesCollection forms a special protocol that allows for ex-
tension in a well-mannered way. Instead of an add: protocol for exten-
sion, these collections respond solely to include:, which ensures that
at least one element of the collection is the target object, but doesn’t
do anything otherwise. Using include: will never add an object if it is
already present.

The default implementation of this protocol is Set, which stores its
elements in a padded array.

3.6.5 Mappings and Dictionaries

Mappings are a general protocol for associating the elements of a set of
keys each to a value object. Dictionaries are essentially Sets of these
associations, but they are generally used with symbols as keys.

Mapping defines the general protocol at: and at:put: that Se-
quences use, which also happen to be Mappings. Mappings also sup-
port iteration protocols such as keysDo:, valuesDo:, and keysAnd-
ValuesDo:.

23

3.6.6 Trees

Slate includes libraries for binary trees, red-black trees, trees with or-
dered elements, and tries.

3.6.7 Vectors and Matrices

Slate includes the beginnings of a mathematical vector and matrix li-
brary.

3.7 Streams and External Iterators

Streams are objects that act as a sequential channel of elements from
(or even to) some source.

3.7.1 Basic Protocol

Streams respond to a number of common messages. However, many
of these only work on some of the stream types, usually according to
good sense:

� stream next reads and returns the next element in the stream.
This causes the stream reader to advance one element.

� stream peek reads and returns the next element in the stream.
This does not advance the stream reader.

� stream next: n draws the next n number of elements from the
stream and returns them in a sequence of the appropriate type.

� stream nextPut: object writes the object to the stream.

� stream nextPutAll: sequence alias stream ; sequencewrites
all the objects in the sequence to the stream. The ; selector allows
the user to cascade several sequences into the stream as though
they were concatenated.

� stream do: block applies the Block to each element of the stream.

� stream atEnd answers whether or not the stream has reached
some limit.

� stream upToEnd collects all the elements of the stream up to its
limit into an OrderedCollection.

24

3.7.2 Basic Stream Variants

PositionableStream acts as a means to iterate over a sequence of ele-
ments from a Sequence. These streams store their position in the
sequence as they iterate.

ReadStream provides input-only access to any source.

WriteStream provides output-only access to any target.

ReadWriteStream allows both read and write access, and caches its
input as necessary.

DummyStream is a ReadStream that returns Nil repeatedly.

BlockStream is a ReadStream that targets a no-input Block and re-
turns it’s output each time.

FileStream targets a FileHandle.

3.7.3 Standard Input/Output

The Slate interpreter provides two Streams primitively, ConsoleInput
and ConsoleOutput, which are Read- and WriteStreams by default.

3.7.4 Collection Iterator Streams

Each collection type may define its own Stream type which goes over its
elements in series, even if the collection is not ordered, and only visits
each element once. This type’s prototype is accessed via the slot Iter-
ator within each collection. So Set Iterator refers to the prototype
suitable for iterating over Sets.

In order to create a new iterator for a specific collection, the iter-
ator message is provided, which clones the prototype for that collec-
tion’s type and targets it to the receiver of the message.

3.8 Files

File access in Slate is currently rudimentary. The interpreter provides
an object type FileHandle which follows the corresponding protocol:

FileHandle newFor: filename returns a handle for a String that names
a path to a file.

open opens the file.

exists answers whether there is a file with the handle’s pathname.

close closes the file.

25

read reads the next byte from the file.

position returns the position within the file.

size returns the file size in bytes.

write: char writes one byte to the file.

write: seq writes a sequence of bytes to the file.

name returns the file’s pathname.

atEnd answers whether the file’s end has been reached.

FileStream newOn: filehandle creates a new Stream to read and write
to the file.

Perhaps the most important utility is to load libraries based on path
names. ’filename’ fileIn will execute a file with the given path
name as Slate source.

3.9 Types

In coordination with the reserved syntax for type-annotation in block
headers, Slate’s standard libraries include a collection of representa-
tions of primitive TYPES as well as quantifications over those types.

The library of types is laid out within the non-delegated namespace
Types in the lobby.

Any The type that any object satisfies: the universal type.

None The type that no object satisfies: the empty type.

Range A parametrized type over another type with a linear ordering,
such as Integer. This type is bounded, it has a start and a
finish (least and greatest possible member). In general, any Mag-
nitude can be used as a base of a Range type.

Member The type associated with membership in a specific set of ob-
jects.

Singleton The type of a single object, as distinct from any other object.

Clone The type of an object and its CLONE FAMILY, the set of objects
that are direct copies of it.

Array The Array type is parametrized by an element type and repre-
sents arrays of all length of that type.

Block The Block type represents code closures of a given (optional)
input and output signature.

26

Types may be combined in various ways, including union:, inter-
section:, and extended via derive and deriveWith: which preserve
type constraints on the derivations.

4 Style Guide

Slate provides an unusual opportunity to organize programs and envi-
ronments in unique ways, primarily through the unique object-centered
combination of prototypes and multiple-argument dispatch.

4.1 Environment Organisation

4.2 Instance-specific Dispatch

4.3 Mini-interpreters Using Macros

References

References

[1] Multiple Dispatch with Prototypes. Lee Salzman, 2002

[2] Ole Agesen, Lars Bak, Craig Chambers, Bay-Wei Chang, Urs Holze,
John Maloney, Randall B. Smith, David Ungar, and Mario Wolczko.
The Self Programmer’s Reference Manual. Sun Microsystems and
Stanford University, 4.0 edition, 1995.

27

