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Abstract

Modern object-oriented programming languages have a diverse and
disjoint set of features that all prove beneficial to the task of designing
and organizing maintainable programs. Three emerging families of object-
oriented languages that are the focus of this paper - prototype-based lan-
guages, multi-method languages, and subject-oriented languages - each
provide many orthogonal benefits to program design that prevent pro-
grams from becoming procedural and brittle. These language families,
however, rely on differing interpretations of object-oriented programming
such as the message passing model and classification. Language design-
ers have, so far, failed to address this semantic schism with a single ob-
ject model that not only unified these approaches but also preserves the
original expressiveness of these approaches without undue complications
or restrictions. This paper introduces a novel object model, prototypes
with multiple dispatch (PMD), that unifies these concepts by dispensing
with class-based and message-based conceptions of object-oriented pro-
gramming and instead reinterprets it in a purely prototype-based model
consisting of interacting objects and context. A formal semantics of PMD
is presented, and finally, the paper discusses various implementation tech-
niques in the context of the programming language Slate, based on PMD.

1 Introduction

Programming practice has evolved into a maze of unique programming lan-
guages, each with expedient yet differing or incompatible feature sets. This
offers the programmer the dilemma of choosing the lesser of evils, or rather
which features he can more easily live without, rather than the choice of which
tool is best for the job. The programmer must often use awkward facilities to
glue various programs written in different programming languages together, as
one language often does not fulfill his needs. Unifying approaches to program-
ming languages simplify the programmer’s job, both reducing the number of
tools he needs to work with and allowing him to consolidate his expertise with
one system toward solving a problem.
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This problem prevails especially in the field of object-oriented programming
languages, which model programs as a collection of small, anthropomorphic
units of program functionality (objects). Because this model carried wide-spread
intuitive appeal, many different families of object-oriented programming arose
which all espouse different views of what exactly an object is. However, the
underlying conceptual model of interacting object remains the same, so one
desires that all these differing notions of objects be unified into one model of
programming that does not require a choice of benefits.

This paper considers three recent, disparate innovations in object-oriented pro-
gramming: prototype-based languages, multi-method languages, and subject-
oriented languages. Prototype-based languages and multi-method languages
provide naturally orthogonal feature sets, yet at their core depend on conflicting
notions of objects that complicate their integration into a single language. Ei-
ther model naturally supports some essential characteristics of subject-oriented
languages, yet neither one alone sufficiently captures all of them. A paradigm
providing both the features of prototype-based languages and multi-method lan-
guages would allow their orthogonal feature sets to address problems together,
as well as provide a natural host for a subject-oriented language by capturing
all of its essential properties.

This paper presents prototypes with multiple dispatch and its intuitive basis,
otherwise called “PMD”, a model integrating the features of prototype-based
languages, multi-method languages, and subject-oriented languages into a sin-
gle, consistent paradigm of interacting objects. The paper further provides a
formal semantics for understanding PMD and its implications upon language
structure. Lastly, the paper discusses the practical implementation of PMD in
the programming language Slate [Rice and Salzman, 2004] and various expedi-
ent optimizations to the basic algorithm, including sparse representation of dis-
patch information, partially dispatching upon method arguments, and method
caching.

2 Background

Object-oriented programming encompasses a wide diversity of programming lan-
guages that frame the problems of program design and reuse in a model similar
to how people often describe and manage real-world phenomena, as a system
of interacting objects, each with individual behaviors and motives. This con-
ception of programming dates back to the language Simula [Dahl et al., 1970],
which was literally intended for simulating real-world problems in a program-
ming environment, a task which proved cumbersome in contemporary procedu-
ral languages. Simula gave birth to a progression of families of programming
languages which are collectively known as object-oriented programming lan-
guages, and which either trace much of their semantics back to ideas presented



variable Fish : integer;
variable Shark : integer;
data Animal
{
type : integer;
healthy : boolean;
X
procedure swallow (animal : Animal, other : Animal);
procedure swimAway (animal : Animal);
procedure fight (animal : Animal, other : Animal)
{
animal.healthy := False;
}
procedure encounter (animal : Animal, other : Animal)
{
if (animal.type = Shark)

{
if (animal.healthy)
{
if (other.type = Fish)
swallow (animal, other);
else
if (other.type = Shark)
fight (animal, other);
}
else
swimAway (animal);
}
else
if (animal.type = Fish)
{
if (other.type = Shark)
{
if (other.healthy)
swimAway (animal);
}
}

Figure 1: Procedural example



in Simula or at least address many of the issues Simula was intended to, rather,
by framing programming problems as one might real-world phenomena.

Figure 1 presents an example of a procedural program modeling a small food
chain consisting of sharks and fish. This running example shall be used both
to exhibit differences in various object-oriented paradigms and motivate their
introduction. In this example, unhealthy sharks will swim away from any other
animals they encounter, while healthy sharks will eat any fish they find or fight
any other sharks they encounter. Fish will simply swim away from any healthy
sharks.

While the example is concise, it is surprisingly complex to understand despite
its small size. Notice how the program must explicitly provide all the details of
identifying the type of an animal and how this identification code is entangled
with the more relevant details of the program, the behavior of the animals.
Further, the program must explicitly choose an awkward representation of both
animal type and health.

2.1 Class-based Programming Languages

The original family of object-oriented programming languages models objects
by classifying them according to their intended purposes. These classes sub-
sequently become explicit structural descriptions of how ideal objects, which
are merely instances of some class, appear and how they should interact with
other objects. Objects may then be instructed to perform some named task,
and depending on the behavior of objects in its class, will perform the task in
an appropriate manner, as determined by methods, polymorphism, and inheri-
tance.

2.1.1 Methods

Contemporary languages of Simula structured programs as a collection of pro-
cedures, lists of instructions on how exactly to compute a result, that may in
turn call upon other procedures to help compute this result. However, at best,
this only allows a programmer to describe how the result of some real-world
phenomena, should be approximated. As a departure from this model, class-
based programming such as in Simula appeals to the idea of methods, or rather,
that different classes of objects have different methods of performing a task.
Each class may then implement a method for performing some named task on
an object in that class, possibly involving some other objects which serve as
arguments to the method. The class thus plays a role in selecting which method
should be used to perform the task, rather than as a catch-all procedure for
which the user is entirely burdened with determining when and where to apply
it. The provider of a class may instead abstract some of these details from the
user, allowing for a simple reuse of expertise.



2.1.2 Polymorphism

Even methods, however, remain somewhat obtuse and retain shades of their
procedural roots, for they still focus extensively on concrete details of how some
method should be performed with respect to some known class of objects. The
programmer needs to know the exact contexts in which he is using some method
and what specifically he is using it with. In effect, he must know at all times,
while writing a program, the exact implementation of any method he is using.
In large programs, such global knowledge may be impossible, if not less than
expedient, to come by.

Simula introduced the “virtual” method to ease this burden. The virtual method
is a place-holder that allows the actual method implementation to vary based on
the class of an object. Each class is responsible for defining its own version of the
method, and the virtual method interfaces with the differing versions. Invoking
the virtual method will invoke the respective method implementation for the
class, without any knowledge of the exact class of the object it is invoked upon.
Objects become interchangeable, a property known as polymorphism, where any
object can substitute for another so long as they implement the same necessary
interface of virtual methods. This frees the programmer to focus on the abstract
behavior of objects, without worrying about specific details of how the object
implements them. However, he still must decide exactly which methods must be
virtual ahead of time. This creates the problem of fragile interfaces that mirrors
the fragility of how normal procedures must decide all details of the data they
are manipulating. Interfaces must be constantly updated to accommodate any
extra necessary virtual methods of objects implementing the interface, until
they become sufficiently general to support most implementations. For rapidly
evolving or very large interfaces, this may require many tedious iterations of
updating.

Subsequent languages such as Smalltalk [Goldberg and Robson, 1989], however,
improved upon this idea by reconsidering what a method is in anthropomorphic
terms. One instructs an object to perform some method by entering into a dis-
course with it, or rather, by sending it a message which it receives and to which
it responds with some reply depending on its class. The details of what method
the object is using to generate this reply are not exposed to the programmer,
only that he is sending it a message. He is not only no longer burdened with
knowing the class of objects he is using, but he also no longer need laboriously
specify and maintain interface definitions. This level of polymorphism avoids
the fragile interface problem while also freeing up the process of specifying ab-
stract interfaces from notions of implementation so that it may be orthogonally
provided in the most humanly expedient fashion possible.



2.1.3 Inheritance

Another central idea of class-based programming languages is that a class may
optionally inherit all the methods provided by another class, or rather, that
a class may be a subclass of some other class which serves as its superclass
such that objects in the subclass may perform any methods which objects in
the superclass may, as well as any restrictions or extensions of these methods
particular to that subclass. This allows for a significant reuse of structure as
a programmer can enable a class to implement an entire collection of methods
without having to rewrite any of them. If any of these methods are inadequate
for whatever purpose of the class, the programmer may then extend them to
suit the new desired behavior or define entirely new methods not prescribed
by the original superclass. When combined with polymorphism, inheritance
provides great expressiveness in easily constructing new objects which may fit
into a variety of contexts without having to rewrite or restructure large bodies
of code.

Smalltalk, for its message-passing model of class-based programming, interprets
subclassing as a type of referral between classes. When a message is sent to an
object, its class is called upon to interpret the message for that object. Should
the class not define any method responding to a message, or rather not under-
stand it, the class will refer the message to its superclass to see if the superclass
understands it. The process recurses until any of the class’ superclasses un-
derstands the message and may respond to it, or until all superclasses have
been exhaustively searched with no appropriate method found, in which case
the message is in error.

2.1.4 Example

Figure 2 presents the running example in the class-based programming style.
The first striking feature of this example is that it loses conciseness over the
procedural version due to the necessary interface code. However, the example
does show factoring of some concerns, as fish and sharks are responsible for
deciding what happens when they encounter other animals, but only in the
case the shark or fish is the encounterer. The programmer is forced to decide
whether the encounterer or encounteree is the more dominant decider of animal
behavior. The Shark class now encapsulates the details of its health and need
not expose the particular implementation details. Further note that each class
is still responsible for deciding determining the animal type of the encounteree
in an ad-hoc and tangled manner much as in the procedural example.

2.2 Multi-methods

Despite its flexibility, this message-passing model of polymorphism, which as-
sumes a one-way discourse with an object, is not well-suited for modeling sit-
uations where an object must have a method for interacting with a variety of



class Animal
{
method swimAway ();
virtual method encounter (other : Animal);
}
class Fish inheriting Animal
{
method encounter (other : Animal)
{
if (classOf (other) = Shark)
{
if (other.isHealthy())
swimAway ();

}
class Shark inheriting Animal
{
variable healthy : boolean;
method swallow (other : Animal);
method isHealthy ()
{
return healthy;
}
method encounter (other : Animal)
{
if (isHealthy())
{
if (classO0f (other)
swallow (other);
else
if (classOf (other)
fight (other);

Fish)

Shark)

}
else
swimAway ();

}
method fight (other : Shark)

{
healthy := False;

}

Figure 2: Class-based example



different classes of other objects. The programmer, when faced with this prob-
lem, ends up defining one monolithic method which is not only responsible for
determining which class of objects its arguments belong to, but which is fur-
ther entirely responsible for dispatching to appropriate code to handle objects
of whichever class it manually determined them to be in. Essentially, the pro-
grammer is returned to an entirely procedural mode of programming and loses
many of the benefits of object-oriented programming.

The message-passing model of polymorphism dispatches to a method for some
respective message based upon a single object’s class, referred to as single dis-
patch, such that the method is chosen from the most specific subclass to which
the object belongs to and to which the method is defined. It is effectively taking
the set of all methods for a given message defined at either the object’s class or
any of its subclasses, and finally choosing the least element of a linearly ordered
set of methods as defined by the subclass relation on each method’s receiver
argument. A method is thus less than another method in this ordering if the
class of its receiver argument is a subclass of the class the other methods receiver
argument, and so the least method in this ordering must be the most-specific
according to the subclass relation.

There exists a corresponding multiple object form of polymorphism, or multi-
ple dispatch, used in systems such as CLOS [Steele, 1990], Cecil [Chambers, 92],
and many other programming languages, where a method, referred to as a multi-
method, is selected based upon the class of all arguments to the method, not
just the argument distinguished as the receiver of a message. In this model, a
class product is generated from the classes of all arguments to a method, and the
collection of all such methods with the same name, a method family, is ordered
according to the subproduct relation on their class product, rather than by the
class of some receiver alone. Essentially, the subproduct relation is substitut-
ing for the subclass relation such that one multi-method is more specific than
another if the classes assigned for all its arguments are subclasses of the classes
assigned to the corresponding arguments in the other. This ordering, as used in
Cecil, is partial in that if at one argument position the subclass relation holds
and at another it does not, the multi-methods are no longer ordered. Alterna-
tively, the class products of multi-methods may be lexicographically ordered,
as in CLOS, so that the subclass relation for the classes of earlier argument
positions is more significant than and overrides the subclass relation for later
arguments, resolving any ordering ambiguities. Thus, all multi-methods are
now linearly ordered provided the ordering contains no methods with duplicate
argument classes.

In a multiple dispatch model, the task of dispatching to code based on all
argument positions is thus offloaded from the programmer and back into the
programming language, offering a stronger and more expressive form of poly-
morphism. Methods for dealing with specific combinations of argument classes



need no longer be in one monolithic method and may be independently defined.
The resulting method family may even extend as necessary, without having to
deal with large and brittle program code.

2.2.1 Example

Figure 3 presents the running example framed in terms of a language with
multi-methods. Similarly to the class-based example, it achieves a factoring of
concerns into classes. However, note that the multi-methods examples com-
pletely eliminates the ad-hoc protocol needed to determine the animal type of
the encounteree and is more concise than the class-based example. Other ani-
mals could be trivially added to the example by simply defining new methods,
rather than having to modify each class as with the solely class-based exam-
ple. The example becomes satisfyingly simple, but it still retains the awkward
protocol for deciding on and responding to the health of the shark. The new
factoring has also exposed new redundancies, such as having to describe that an
unhealthy shark should swim away from other animals in two different places.

2.3 Prototype-based Programming Languages

While class-based programming languages offer a more familiar simulation of
objects than procedural programming languages, classes sometimes fail as units
of program design in that they may either be too restrictive or not restrictive
enough for representing objects. A class must specify the behavior of an object
for its entire lifetime, in which case it is too restrictive for objects that evolve.
Differing behavior over the lifetime of an object must be entangled in a single
class or parameterized in an ad-hoc manner, and objects which must significantly
evolve during their life in the program prove cumbersome. Further, one often
deals with unique objects that don’t easily subscribe to any classification or for
which multiple instances of its chosen class may be contradictory. Similarly, one
may wish to uniquely specify the behavior of an object over only a portion of
its lifetime or behavior, in which case a class is not restrictive enough.

Classes do not easily express a host of these design issues that often surface in
programs, and so necessitate a more general unit of object representation that
subsumes the uses of classes as well as addressing these issues. The programming
language Self [Ungar and Smith, 1991], a descendant of Smalltalk, however, is
the progenitor of a family of programming languages, referred to as prototype-
based programming languages, that reexamine the notion of objects and their
representation in this context.

2.3.1 Prototypes

Prototype-based programming languages confront head-on the issues of how
exactly an object is represented and whether notions traditionally taken for
granted, such as classes, best represent object-oriented programming system.



class Animal;
method swimAway (animal : Animal);
class Fish inheriting Animal
{
}
method encounter (animal : Fish, other : Fish)
{
}
method encounter (animal : Fish, other: Shark)
{

if (other.healthy)

swimAway (animal);

}
class Shark inheriting Animal
{
healthy : boolean;
}

method swallow (animal : Shark, other : Animal);
method encounter (animal : Shark, other : Fish)
{
if (animal.healthy)
swallow (animal, other);
else
swimAway (animal);
}
method encounter (animal : Shark, other : Shark)
{
if (animal.healthy)
fight (animal, other);
else
swimAway (animal);
}
method fight (animal : Shark, other : Shark)
{
animal.healthy := False;
}

Figure 3: Multi-methods example
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Classes are eliminated in favor of the idea of prototypical objects, objects that
serve as examples from which like objects may be constructed, and which are
self-representing, no longer depending upon classes to describe their behavior
nor belonging to any particular classes, and so may be uniquely constructed.
Objects directly contain methods and other information normally posited within
a class, and so are free to vary in behavior on a per-object basis, rather than
on a per-class basis. Methods may be added or remove from such objects at
any times, and so objects are free to evolve and differentiate independent of the
restraints of any classification. Similarly to how the notion of message passing
divorces the specifying of method interfaces from method definition, prototype-
based languages divorce the classifying of object functionality from the task
of object construction, again freeing it to be provided for in more humanly
expedient ways when possible.

2.3.2 Cloning

As objects in prototype-based programming languages are self-representing,
they may not rely upon some external blueprint for construction such as a
class. So, prototype-based languages instead provide for reuse of objects by
cloning, where and only where it makes sense to do so, prototypical objects that
embody all the necessary behavior of the object. The idea of cloning appeals
to a simple biological metaphor of creation where, given some object, a clone of
it may be constructed that bears all the methods and information the original
object contained. This new clone is a distinct object and is no way constrained
to remained at all like its originator, unlike in a class system where the classes
of objects are usually fixed and an object may not change its behavior in any
way not prescribed ahead of time by its class. Once cloned, the new object may
thus be refined to whatever purpose the programmer desires, whether it is to
create a new sort of prototypical object or to employ it as just another instance.

2.3.3 Delegation

Cloning, however, suffers from the fact that the newly cloned object is entirely
separate from its originator, and so beneficial changes made to the originator
won’t propagate into the clone. Objects and their methods may need to change
and evolve while maintaining their identity, thus creating a new problem of
consistent and updated behavior for existing objects. To overcome this, Self
introduces the idea of delegation where, in a manner analogous to the superclass
referral process for messages in Smalltalk, an object may choose to delegate the
responsibility of responding to undefined messages to some other object. Should
an object have no method defined to that will respond to a message, it will refer
the message to any objects it delegates to and utilize whatever method it finds
they would have used to respond to the message.

Both the object and any objects it delegates to are free to change independently,
and any changes to the objects delegated to will be dynamically inherited into
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said object. So, if the objects delegated to redefine or define any new meth-
ods for some messages, the object delegating to them will automatically gain
the ability to respond to those messages with the particular methods if it does
not already define its own methods for the messages. Moreover, objects in Self
are free to change the objects they delegate to at any time, and so may use
delegation as a simple means for reconfiguring the behavior of their methods.
Otherwise, one would be forced to explicitly parameterize predetermined meth-
ods based on the object’s state and fall into a more procedural programming
style. Delegation thus not only allows for dynamic reuse of methods, but also
provides an expressive means of factoring object behavior for varying conditions
into distinct units.

2.3.4 Example

Figure 4 presents the running example in a prototype-based language. The first
striking feature of this example is that, similarly to the multi-methods example,
it has become much more conciseness than the solely class-based example, and
is possibly more concise than the multi-methods example. However, in terms
of requiring the programmer to decide on the dominant decider of encounter
behavior, it achieves a factoring no better than the class-based example. The
ad-hoc protocol for deciding the animal type of the encounteree remains al-
most unchanged from the class-based example. The prototype-based example,
however, achieves the new conciseness by modeling the health of a shark in a
drastically different fashion than the preceding examples. Instead of using an
ad-hoc protocol for health, it represents health as an intrinsic property of the
Shark object itself. When a shark is healthy, it delegates to the HealthyShark
behavior, and otherwise evolves to delegate to the DyingShark behavior once it
is injured. The differing behavior for each state is now factored into two distinct
objects, at least for the encounterer. This example, while also pleasingly simple,
never the less retains some of the awkwardness of the class-based example.

2.4 Subject-oriented programming

While object-oriented programming allows objects and their expertise to be
reused, such behavior is objective in that it must be fixed ahead of time with
respect to and must provide for all anticipated uses. An object may parameterize
its behavior on its state or employ delegation, but this requires that the object
be explicitly notified any time it needs to behave differently, by changing state
or delegations, using ad-hoc protocols for doing so. Users of the object must
manage, at the granularity of individual objects and without limitation, how the
object behaves, any changes to its behavior temporarily necessary, and restoring
the object’s original behavior after usage. This again leads to fragile, ill-factored
code where behavioral details of an object are entangled in all the code using
it. Further, if one wishes to restrict usage of an object by certain parties for
security, these restrictions must be provided wholesale, as any explicit behavior
parameterization scheme would quickly be exploited to access this forbidden
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object Animal;
object Fish = clone (Animal);
object Shark = clone (Animal);
object HealthyShark;
object DyingShark;
addDelegation (Shark, HealthyShark);
method Animal.swimAway Q) ;
method Fish.encounter (other)
{
if (other.isA(HealthyShark))
swimAway ();
}
method HealthyShark.swallow (other);
method HealthyShark.fight (other)
{
removeDelegation (HealthyShark);
addDelegation (DyingShark);
}
method HealthyShark.encounter (other)
{
if (other.isA(Fish))
swallow (other)
else
if (other.isA(Shark))
fight (other)
}
method DyingShark.encounter (other)
{
swimAway ()
}

Figure 4: Prototype-based example
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behavior.

Subject-oriented programming, as espoused by the Self language extension Us[Ungar and Smith, 1996],
allows for differing, subjective views of an object that are implicit properties,

as opposed to explicitly managed, of what is using it. The different views re-

strict which methods are visible of all objects used within them. This not only

allows methods to be hidden in some perspectives and visible in others, but

also allows entirely different versions of a method to be provided depending on

how the method is viewed. This provision for contrasting behavior of the same

object’s methods allows for a much stronger notion of security and multiple user

orientation than mere behavior hiding would otherwise.

2.4.1 Subjects

Subjects provide the unit of perspective in subject-oriented programming, and
appeal to the idea that depending on the subject at hand, one may expect
an object to perform differently than usual of some objective description of
its behavior. The language Us views subjects as implicit method arguments
that, exactly as with multiple dispatch, are to be dispatched upon in addition
to normal method arguments. These subjects are also represented by objects,
and as with any other object in Self, may use cloning and delegation to both
construct new subjects and to compose them with other subjects in the usual
manner. By delegating from one subject to another, a subject inherits all of the
peculiarities of the subject it is delegating to.

The programmer further manages subjects at the granularity of units of program
design, rather than at the usage of specific objects. Individual objects no longer
manage the bookkeeping details of providing different behavior depending on
use. The current subject is a global property of the running program such that,
so long as it is in use, it both globally and implicitly effects the behavior of all
objects viewed within it and may be changed at will. Delegation, in combination,
allows the composition of novel subjective behavior with the currently prevailing
behavior, by creating new subjects that delegate to the current subject. Further,
if the operation of changing a subject is itself a method, the current subject may
restrict, where appropriate, what changes of subject are allowed.

3 Prototypes with Multiple Dispatch

3.1 Prototypes Gone Wrong

The entangling of data usage concerns with all the program code that uses the
data motivated the introduction of Simula and object-oriented programming.
This same problem arose in new contexts, despite this advance, motivating new
families of object-oriented programming to cope with it. While ultimately suffer-
ing the same problem, these contexts do not easily yield to the same conceptual
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machinery for eliminating it. Moreover, the implementations of the differing
mechanisms often cross-cut each other, preventing language designers from im-
plementing all of these orthogonal solutions in a single language or considering
them in a single framework [Abadi and Cardelli, 1996]. This partitioning of
problems and solutions forces a degree of schizophrenia upon the programmer.
Despite the diversity of program design problems, he must choose a single tool
that does not adequately address all of the problems and in many cases rules
out the use of other solutions.

Multi-methods, for instance, depend upon the notion of a fixed inheritance
hierarchy, usually but not always provided for by classes, for a globally applicable
ordering from most specific to least specific of multi-methods. It generalizes the
specificity of individual classes into a class product for the method parameters
that may subsequently be ordered. Any modification or restructuring of the
class hierarchy forces this order to be reevaluated, and so it must be constantly
synchronized. Further, methods must be specified upon classes entirely for the
sake of generating this ordering. Should one wish to only define a multi-method
upon some unique object, a class must be created explicitly by the programmer
or implicitly by the implementation so that this multi-method will sequence
properly in the global ordering of multi-methods.

Prototype-based languages, however, take as their main hypothesis that the
classes needed in languages with multi-methods do not accurately represent the
process of object construction. They do not, however, rule out classes being
developed as an expedient organization of pure objects and delegation, as they
may express classes as normal objects that serve as repositories of methods and
are delegated to by convention. Yet to require the usage of classes or some
external typing system as a prerequisite for using multi-methods at all would
prevent the two from being used upon the same objects and problems, although
while still allowing both to be used in a mutually exclusive fashion within the
same language. This only serves to reinforce the programmer’s growing sense
of schizophrenia.

Further, in a prototype-based language, each object is conceptually in its own
class. A cloned object must support all the original methods of its source object
and allow for revision into an entirely new prototype. The new object is not
simply in a subclass of the class of the object it was cloned from, since in a true
prototype-based languages, methods may be removed as well as added. The
new object should not be forever constrained to provide all the methods and
behavior of its original source. If a multi-method implementation is to properly
co-exist with prototypes, it must define new methods for the cloned object’s
class based upon all methods existing for the source object’s class so that they
properly inherit and yet still support removal. Further, any changes in what
an object delegates to generate an entirely new class hierarchy upon which to
determine method specificity, again reinforcing that the new object’s class is not
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merely a subclass of the source object’s class, but instead is a disjoint class of
its own.

In the face of these implementation difficulties, languages such as Cecil that at-
tempt to integrate prototype-orientation and multi-methods enforce restrictions
upon the prototype-oriented model that result in a level of expressiveness little
better than classes. Cecil does not allow delegation relations to be changed, and
so they are fixed at the point an object is created. Further, objects may not
remove methods from themselves once they are added. Prototypes thus become
essentially classes, where the operation of instantiating a class has merely been
conceptually washed over with the idea of cloning, but not to its fullest extent.
While methods may still be added to classes at any time, this feature exists

in many normal class-based languages incorporating multiple dispatch such as
CLOS.

Subject-oriented programming benefits from the usage of either paradigm, but
currently does not have an adequate host that may easily supply both. Multi-
methods naturally represent the role subjects play in dispatching to individual
multi-methods by treating the subject as just another argument to be dispatched
upon. Prototype-based languages naturally represent distinct and evolving user
contexts or subjects using cloning and delegation to compose new subjects. One
noteworthy subject-oriented language, Us, chooses the prototype-based model to
flexibly represent the construction of subjects via the normal prototype-oriented
features of its host language Self. However, because Self is inherently a single
dispatch language, Us must use an ad-hoc form of double-dispatch not provided
for by Self which the authors admit is slow and costly. Were a language to
provide both mechanisms, such compromises could be avoided.

3.2 Internalizing Multi-methods as Interactions

This apparent conflict between prototype-based languages and multi-methods
arises because of their contrasting views of object representation. Prototype-
based languages espouse an internalized approach, that objects must be self-
representing and carry all the necessary information to describe their behavior.
Multi-methods favor, but do not necessitate, an externalized approach, that
external decisions must be made about a multi-method’s applicably based upon
classes of its arguments, where classes themselves are a notion external to objects
regardless of their utility. To cleanly reconcile the two, the notion of multi-
method applicability must be internalized into an object’s representation, rather
than retaining its external character.

Traditionally, a multi-method is applicable to some list of arguments if the class
of each argument is a subclass of the class of each parameter in the respective
positions. Further, one multi-method is more specific than another if the class
of each of its parameter is a subclass of the class of the other multi-method’s
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parameters in the respective positions. So, one dispatches a multi-method by
both finding the set of applicable methods, and then selecting the most specific
of those methods to dispatch to, if one exists.

Instead of making an external decision about the class of an object, so that
the subclass relation may be evaluated for method applicability, I propose that
one directly query the object if it supports a given multi-method. I introduce
the concept of a role, such that each multi-method represents an interaction, or
consensus, between its arguments where each argument plays a specific role in
the execution of that multi-method. Each multi-method defines roles upon all
the objects it is applicable to such that the objects may only perform specific
roles in the interaction, but not others.

@

{ Shark} {Animal}

| |

{ Shark} {Fish}

Figure 5: Comparison of (a) traditional multi-method organization and (b)
PMD

The task of determining multi-method applicability is revised so that each argu-
ment’s role is decided at the point of invocation, and one queries each argument
to determine if it contains the specified role for the multi-method. Should the
role not be found on the argument, its delegation relationships are traversed to
determine if the delegated-to objects support the role for the argument. Further,
the process of finding candidates for applicability may be folded into the process
of role discovery, as roles also supply information about which multi-methods
may be partially applicable, not just those which are entirely applicable. This
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separates the decisions of multi-method applicability from any notion of class,
and the role information may be freely and cheaply reproduced should an object
need to be cloned.

Without external class information, there is no provision for deciding whether
one multi-method is more specific than another. An expedient notion of speci-
ficity independent of classes must be introduced to deal with the delegation
present in prototype-based languages. I propose a linear ordering of the objects
an argument delegates to that may be easily evaluated at the time of dispatch,
rather than at the time a multi-method is defined, so that no global ordering of
multi-methods needs to be maintained.

The process of dispatch then shifts from subclass determination to role discov-
ery. Each argument to a method invocation and the objects it delegates to are
traversed, searching for any roles those objects may support while noting the
position in the delegation ordering the roles were found. Multi-methods whose
full set of roles are discovered on the arguments serve as applicable methods.
The positions at which the roles were found for each argument are composed
into a specificity ranking for a method so as determine which method is the
most-specific. This neither depends upon any notion of class nor requires the
delegation relationships among objects to be predetermined, yet still preserves
the discovery of applicable and most-specific multi-methods. As objects inter-
nalize role information, the process further behaves well under cloning and re-
moval of methods. Prototype-based languages may now coexist peacefully with
multi-methods, without compromising the expressiveness of either approach.

Figure 5 illustrates this difference in organization. Under the traditional multi-
method approach, the encounter methods, illustrated as rectangles, appeal di-
rectly to the Animal, Fish, and Shark classes for their parameters, numbered
within the methods, and these classes ultimately determine the respective speci-
ficity of the two methods. The encounter method for Shark and Fish is more
specific than the method for Shark and Animal, as Fish is a subclass of Animal.
Under the new organization, the encounter methods no longer contain any infor-
mation about dispatch (unless otherwise desired). The prototypes for Animal,
Fish, and Shark, illustrated as circles with delegations as thick arrows, inter-
nalize the dispatch information as roles which reference the original methods,
illustrated as rectangles within the objects containing a selector name and argu-
ment position and pointing to the methods they dispatch. This role information
alone determines which method is dispatched, and no ordering is represented
beyond the delegations between objects. For example, should an encounter be
invoked upon the Shark prototype in the first argument position and the Fish
prototype in the second argument position, dispatch will first traverse the del-
egation ordering of the Shark prototype and notice it supports two roles for an
encounter in the first argument position, assigning both these roles an ordering
position of 1, as Shark is the first object traversed. Dispatch recurses to the
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Animal prototype, finding no roles for this argument position. Next, the sec-
ond argument, the Fish prototype, is traversed and the single encounter role it
contains for the second argument position is assigned an ordering position of
1. Dispatch again recurses to the Animal prototype, but this time finds a role
for the second argument position and assigns it an ordering position of 2, as
Animal is the second delegated-to object traversed in this argument position.
The resulting specificity rank of the Shark and Animal encounter method is thus
(1,2) and for the Shark and Fish encounter method is (1,1). Since the specificity
rank (1,1) is less than (1, 2), the Shark and Fish encounter method is chosen as
most-specific.

3.3 Conceptual Motivations

One may view object-oriented programming as the process of authoring a system
of objects in the third-person. These objects correspond to agents within the
system, and the programmer must describe their interactions and behavior in
an almost vicarious fashion. The resulting program is a story about objects
which, beyond merely being code that a computer ultimately executes, is meant
to be read, revised, and even enjoyed. Just as there are various styles of third-
person writing, there are various spheres of third-person design emphasized by
object-oriented paradigms.

The message passing model of object-oriented programming utilized in single
dispatch, prototype-based languages corresponds to the third-person limited
perspective. It is conceptually simple and appealing on the grounds that the
programmer describes the behavior of an object from a purely internal point
of view. However, this model forces the programmer to explicitly detail all the
mechanisms for identifying other objects that he is interacting with, and in a
procedural manner. In effect, he must guess at the behavior of other objects
than the one serving as his frame of reference in a roundabout fashion. In
many cases, he must even take this model too far and begin describing to other
objects how they should behave in a vicarious manner, destroying factoring
of design. This view denies that any other objects besides a single frame of
reference explicitly exist.

Multi-methods correspond to the third-person objective perspective. They rely
upon external, objective descriptions of object behavior and how they interact
with each other. This allows one to more easily describe how different objects
interact with each other compared to the message passing model. However, this
removes the ability of objects to internalize their behavior, and soon the pro-
grammer is overwhelmed with overly explicit and inflexible descriptions of the
objects he must manipulate, almost as a pedant who must examine an encyclo-
pedia after encountering any new or different object in his environment. This
view simply ignores any objects that are not amenable to objective description.
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The combination of prototypes and multiple dispatch corresponds to the third-
person omniscient perspective. In this view, many objects each, each with their
own internalized behavior and representation, that achieve some goal by con-
sensus, or rather, all agreeing on something to do based on their internalized
perspectives. The programmer benefits from both the internalized representa-
tion of objects and the ability to externally describe how these objects interact.
He is neither burdened by overly explicitly descriptions of his objects, as he may
define them individually and directly, nor limited to design his system from a
single point of reference, as he may describe the terms of consensus among ob-
jects. This appeals to the simple intuitive notion of objects interacting with
other objects, where each object is playing a specific role in an interaction, just
as actors in a play. Instead of the objects possessing a vocabulary of messages
they understand, the objects now possess various roles they may fulfill. Instead
of objects requiring an external authority mandating their structure and be-
havior, they are free to evolve and differentiate. This also provides a natural
model of subject-oriented programming if one considers the author or context
of interaction itself merely another object contributing to the consensus.

Further, this interaction model appeals to paradigms outside of object-oriented
programming, namely pattern-matching, and offers an alternative understand-
ing of polymorphism. Given the prototype-object model, the type of the interac-
tion (the method selector) may itself be considered an object that is interacting
with other method arguments. Delegations further regulate the overall inter-
action by their presence or absence. The method selector, which itself may be
considered an argument, and arguments together provide “horizontal” polymor-
phism reminiscent of simple pattern-matching upon tuples, while delegations
provide “vertical” polymorphism that matches on nested structure in an un-
bounded (transitive) and order-insensitive (commutative) fashion. Dispatching
thus becomes a form of pattern-matching on this overall structure of objects,
instead of considering polymorphism as two distinct mechanisms. If one further
extends role positions to not merely contain the argument positions at which
the methods must be found, but instead be the actual paths in the object struc-
ture or some more flexible criteria for matching the paths, then one may encode
arbitrary patterns both stronger and more general than either multiple dispatch
or traditional pattern-matching that integrate with objects. However, such a
model is beyond the scope of this paper.

3.4 Example

Figure 6 finally presents the running example in a language is both prototype-
based and provides multi-methods. Notice that the PMD-inspired example re-
moves all of the awkwardness of the solely class-based example while retaining
all of the benefits of both the solely prototype-based example and the solely
multi-methods example. The factoring is minimal, with no conditional behav-
ior to the program whatsoever. The description is extremely concise and reads
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object Animal;
object Fish = clone (Animal);
object Shark = clone (Animal);
object HealthyShark;
object DyingShark;
addDelegation (Shark, HealthyShark);
method swimAway (animal : Animal);
method encounter (animal : Fish, other : HealthyShark)
{
swimAway (animal);
}
method encounter (animal : Fish, other : Animal)
{
}
method swallow (animal : Shark, other : Animal);
method fight (animal : HealthyShark, other : Shark)
{
removeDelegation (animal, HealthyShark);
addDelegation (animal, DyingShark) ;
}
method encounter (animal : DyingShark, other : Animal)
{
swimAway (animal);
}
method encounter (animal : HealthyShark, other : Fish)
{
swallow (animal, other);
}
method encounter (animal : HealthyShark, other : Shark)
{
fight (animal, other)
}

Figure 6: PMD-based example
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on a simple case-by-case basis, with the behavior of each case specified individu-
ally. It is further trivially extensible in ways all of the previous running examples
lacked, both by adding new objects to represent new animals or animal states
and by adding methods to handle these new objects. The PMD version of the
running example is not only pleasingly simple, but there are few ways (if there
are any) it can be simplified further.

4 A Formal Model of Prototypes with Multiple
Dispatch

The following formal model of prototypes with multiple dispatch, henceforth
abbreviated as PMD (Prototypes with Multiple Dispatch), captures the essence
of the system without reference to superfluous details of its incarnation. While
the model retains similarity to a practical programming language, notable fea-
tures are omitted, in the style of the lambda calculus, such as object fields and
assignment, non-local returns, and syntactical conveniences, in so far as they
may be framed in terms of or as simple extensions of the model presented and
are not intrinsic to the model or its presentation. Despite these omissions, the
model allows for reasoning about most relevant details of PMD.

4.1 Syntax

l,s,d € locations

e Az.e | e(@ | |1
v o= |

r o::=<s, i, >

O ::= , {T}, e
S ::= (0]

C

d)

—~ =~

Figure 7: Syntax

Figure 7 shows the simplified syntax of PMD. The metavariable x ranges over
variable names, e ranges over expressions, ¢ ranges over valid method parameter
indexes, r ranges over roles, S ranges over stores, [ ranges over locations in
the store (s and d serving as aliases for readability), v ranges over values, and
C ranges over store locations identifying subjective contexts. The notation Z
denotes a sequence of the object z.

PMD assumes only a small number of syntactic constructs representing methods,
which are objects holding an expression to be evaluated under certain method
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parameters; method invocations, which identify a method to be invoked as well
as a set of expressions whose values are to be passed to the method parameters;
and method parameter names, which are placeholders for the store locations
serving as values, as passed by a method invocation. The syntax emphasize
similarities with the lambda calculus where applicable.

As PMD relies on object identity, the model further assumes a store mapping
a store location, used to represent object identity, to an object’s store repre-
sentation which consists first of a sequence of locations denoting the objects
the particular object delegates to, a set of roles identifying the methods defined
upon the particular object, and an expression which, ostensibly, appeals to the
syntactic function of an object without enforcing any particular details of its
implementation. The notation S[I] will be used to denote object representa-
tion corresponding to the location [ in the store S, and the notation S [l — O]
will be used to denote the store S adjusted to map the location [ to the object
representation O. Little is assumed about the initial store (which need not be
unique), denoted e, other than that it contains at least a location for some ob-
ject serving as the initial subjective context, and any store locations that may
be referenced as literal objects.

4.2 Dynamic Semantics

S,Creg—e!,S',C’

S CFe,@)>e (3).5°.C7 R — Selector

S,Cl-eiubef;,S',C'
S,CHvs(vo - vi_1,€i,ei41€n ) Vs (Vo - Vi_1,€},i41--€n),S",C”

R — Argument

l¢dom(S) S'=S[l+—<{(),{},\T.e >]
S,CHAT.e—1,S",C

R — Method

lookup(S, C,v,,0) =1 S[l] =< {(d),{F}, \T.e >
S,Chus(v)—[v/z]e,S',C"

R — Invoke

Figure 8: Dynamics semantics

Figure 8 presents the core dynamic semantics of PMD as a set of reductions rules
of the form S,C F e < €', 5", C’, to be read as “with respect to a store S and
subjective context C, the expression e one-step reduces to €', yielding a new store
S’" and a new subjective context C"”. <—*is to be read as the reflective, transitive
closure of —. As PMD aims to be a simple, uniform object model, these rules
only provide a subset of the necessary behavior for a practical language, but
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suffice to encompass the essential core of evaluation. Further auxiliary rules
will be described in a later section, which are to be taken as an optional set of
primitives fleshing out a suggested object model to accompany PMD.

The rule R — Method adds a new location to the store with an object bearing
the particular method representation as its primitive behavior. The result of
the reduction is the location of this object.

The rule R— Selector ensures that a method selector expression evaluates before
any of the arguments to a method invocation. The rule R — Argument ensures
that all arguments to the method invocation evaluate in a left-to-right order,
and after the evaluation of the method selector.

The rule R — Invoke looks up the location of a particular method, with respect
to a method selector and a sequence of method arguments, given by the lookup
function. Given an object implementing the method representation correspond-
ing to the location, the reduction results in the method’s body expression being
evaluated with the method arguments substituted for the method parameters.
The lookup method, detailing the actual multiple dispatch upon the method
arguments, will be defined in a subsequent section.

4.3 Dispatch Semantics

compose(C,v) = (v') 1 € applicable(S,s,v")
(I=1Vrank(S,1,s,v'") < rank(S,l',s,v"))
lookup(S,C,s,v)=l
Least

vl’Ea,pplz'ca,ble(S,s,ﬁ) R—

Vocicn (order(S,0:)=(do,dm) Ao a<m(Slda]=<(T) {T}He>A<s,il>{7}))
I€applicable(S,s,v0, V)
Applicable

R—

l€applicable(S,s,v0, *,vn)

rank:(S,l,s,vo,---,vn)znosl-sn min{0§k§m|order(5,v,-):(do,~~~,dm)/\S[dk]:<<?),{F},e>/\<s,i,l>€{?}}

Rank

Figure 9: Dispatch semantics

The dispatch semantics presented in Figure 9, given an ordering of method
ranks and a delegation ordering, find the least method applicable to all the
method arguments within a particular subjective context. These semantics are
intended to be intuitively similar to those of multiple dispatch via subclassing
while providing for all the expressiveness of PMD. The functions compose, order,
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<, and [] serve to parameterize these dispatch semantics and may be defined
as desired so long as they adhere to the necessary semantics as described in the
rules in which they are used.

The rule R — Lookup describes lookup function. compose is assumed to be a
function that, given a subjective context and a sequence of method arguments,
will yield a new sequence of methods arguments considering the context. The
simplest interpretation of compose is that it adds the context to the beginning
of the sequence of method arguments. Given the new method arguments, the
least member of the set of applicable methods is found such that the rank of
this method is less than the rank of all other applicable methods besides itself.
The asymmetric, transitive relation < provides a total ordering of the ranks of
applicable methods. If such a least applicable method exists, it is the result of
the lookup function.

The rule R — Applicable describes the applicable function, which yields the set
of applicable methods with respect to some method selector and sequence of
method arguments. order is assumed to be a function that, given a particular
method argument, will return an ordered list of all particular objects in the linear
ordering imposed by the delegation relation bounded by that particular method
argument. Conceptually, order yields all objects reachable from the method
argument (including the method argument itself) by traversal of the delegation
links. A method is then applicable if for every method argument, there exists
some object among those in the ordering bounded by that particular method
argument which contains a role bearing that method and matching the method
selector and the method argument’s position.

Finally, the rule R — Rank describes the rank function. This rule again relies
on the existence of the function order that provides a linear order of objects on
which to determine the rank. [] is assumed to be an operator that composes
the indexes in the ordering for each argument position into an n-dimensional
rank. So, with respect to a particular method selector and sequence of method
arguments, the rank of a method is then the composition (as by []) of the
minimal indexes in the ordering of an object that contains a role bearing that
method and matching the method selector and method argument’s position. In
light of this rule, the preceding rule, R — Applicable, merely determines if a rank
actually exists for a given method.

4.3.1 Suggested Dispatch Parameters

Figure 10 provides suggestions for the parameters compose, order, [, and <
of the dispatch semantics. The intended effect of these suggested parameters
is to configure PMD for interleaving subjective contexts, a depth-first ordering
of the delegation relation, and left-to-right lexicographic ordering of method
arguments.
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compose(C,1) = (1,C)
dfs(ga <l05 ) ln) ) <l_l>) =
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) otherwise

0,4
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A
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Figure 10: Dispatch parameters

The provided compose places the subjective context in the least significant
method argument position. Should the original method arguments not be suf-
ficient for ordering the ranks, the subjective context is then consulted as a
tie-breaker. This behavior is unobtrusive in that methods defined in a more
specific context will integrate with existing methods defined in inherited con-
texts without any special care. An interesting alternative model, however, is
to place the context in the most-significant argument position so that the con-
text is consulted before any other method arguments to determine method rank.
This alternative model provides a layering of contexts, wherein methods will not
integrate with methods defined in inherited contexts, but will instead entirely
override them.

The provided order constructs the ordering of objects by a depth-first search of
the delegation links using the function dfs. A stack is maintained for objects
that have yet to be searched, as well as the currently constructed portion of the
ordering. At each step, the currently visited object is added to the order, and
the ordered list of delegation links is added to the top of the stack, such that the
last delegation link is traversed first on the next step. Objects that have already
been visited are simply skipped so that they only appear in the ordering once
in the earliest position they were found. This depth-first ordering provides a
simple conceptual, a layering of inherited method definitions wherein later added
delegation links always sequence their methods before those in earlier delegation
links, as well as mapping to an efficient implementation. An alternative model,
breadth-first search, is illustrated by the function bfs. The only significant
difference between this model and the depth-first ordering is that delegation
links are added to the bottom of the stack, effectively transforming it into a
queue, such that the breadth of the delegation links are effectively scanned
first before recursing lower. However, this model carries with it significant
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conceptual overhead in that inherited methods will integrate in non-trivial ways
in the presence of multiple delegation and force the programmer to carry a
greater understanding of all involved delegation hierarchies when using objects.
If PMD is limited to only single delegation, either of these models are trivially
equivalent.

The provided [] and < implement a left-to-right lexicographic ordering of
method arguments, wherein [] merely composes the ordering indexes into an
n-dimensional rank vector. < then orders these rank vectors in the obvious
way. This particular implementation maps efficiently to bit vectors and normal
integer comparisons, especially if appropriate limits are placed on the maximal
number of method arguments and size of the ordering. A trivial alternative to
this is a right-to-left lexicographic ordering, while a far more interesting alter-
native is a partial ordering. For a partial ordering, < is modified so that at
least one position in a rank vector must be less than the respective position in
another, but all other positions must be less than or equal, rather than only
all preceding positions. This model is far stricter than a lexicographic ordering,
and may prevent a certain amount of errors caused by unintended combinations
of inherited methods. However, using a partial order complicates composition
of subjective context, such that it will no longer work as illustrated unless the
< operator is extended beyond a simple partial ordering to support it such that
contexts are still lexicographically ordered. If adopting a pure partial order,
and one method is more specific than another except with respect to context
for which the inverse might be true, then these methods are no longer ordered
and dispatching them is in error despite any preferences for context.

4.4 Auxiliary Semantics

Figure 11 presents auxiliary semantics which ostensibly describe the primitive
behavior of operations desirable for an expressive language based on the core
PMD semantics, but do not, however, prescribe the exact behavior of these
operations, nor are these an exhaustive nor uniquely distinguished set of such
operations. It is taken for granted that the arguments to the method invoca-
tions have already been reduced to simplify presentation. It is assumed that
clone, addDelegation, removeDelegation, addMethod, removeM ethod, and
changeSubject name method selectors present in the initial store e, and that e
also contains a method object for each particular operation and named by the
respective method selectors. Further, all objects in  must have roles defined on
them or delegate to an object such that they all serve as applicable arguments
to these operations, and there is a smallest such object in the store containing
these roles, the store location of which is known.

The clone operation, given the location of an object already in the store, will
produce a new location that maps to an equivalent object representation. This
is intended to be the primary mode of instantiating new objects.
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Figure 11: Auxiliary semantics
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The addDelegation operation adds a new delegation to the tuple of delegations
for a particular object. The new delegation is assumed to be the last element
in the resulting tuple of delegations. The removeDelegation operation simply
undoes the effect of an addDelegation operation, and taken together they may
be used to implement positional modification of the tuple of delegations for a
particular objects.

The addM ethod operation will define roles upon the sequence of supplied objects
such that the objects or any subsequent clones will respond to a method lookup
for the given method selector with the given method object. The removeM ethod
operation, given those same objects, will remove the roles from the objects.

Finally, changeSubject is used to replace the current subjective context with a
new object, which will subsequently effect all method lookups thereafter.

4.4.1 Example

addDelegation(Root, Root)
addM ethod(Amwv.do(addM ethod(m, do, m, Root), m,v), apply, Root, Root)
addM ethod(Azy.y, seq, Root, Root)

addM ethod(Aogsv.
apply(Afm.
addMethod(Aov.
seq(removeMethod(m, g, 0), addM ethod(Mo.v, g, 0)),
s,0, Root)

addMethod(Mo.v, g,0)),

addSlot, Root, Root, Root, Root)
addSlot(Lobby, Boolean, Boolean :, clone(Root))
addDelegation(Boolean(Lobby), Boolean(Lobby))
addSlot(Lobby, True, True :, clone(Boolean(Lobby)))
addSlot(Lobby, False, False :, clone(Boolean(Lobby)))
addM ethod(\bt f.apply(t,b),ifThenElse, True(Lobby), Root, Root)
addM ethod(\bt f.apply(f,b), i fThenElse, False(Lobby), Root, Root)
addM ethod(Axy.False(Lobby),=
, Boolean(Lobby), Boolean(Lobby))
addM ethod(Azy.True(Lobby), =, True(Lobby), True(Lobby))
addM ethod(Azxy.True(Lobby),=, False(Lobby), False( Lobby))

Figure 12: Example

As a pathological but expedient example of PMD in action, Figure 12 illustrates
the implementation of comparable boolean objects with a conditional control
flow structure based on the auxiliary semantics presented above. The example
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supposes the existence of an object Root which has defined on it all the methods
described in the auxiliary semantics and to which all objects delegate to, an
object Lobby which is a clone of Root and serves as a namespace, and distinct
named objects serving as selectors sufficient to cover all uses of selectors in this
example.

Firstly, it declares some essential utilities for later use in the example that
illustrate some of the expressive power of PMD. It ensures Root delegates to
itself so that all objects cloned from it will also properly delegate to it and
support any new methods defined on it. Next, it illustrates a higher-order use
of addMethod by defining a method apply, which defines the method do on
the supplied method m to invoke itself (on itself and its arguments), to allow
for the binding of temporary names and simple application of closures. The
method seq is defined, which merely returns the value of its last argument, so
as to allow a sequence of expressions to appear in a method body. Finally,
it defines addSlot which implements assignable slots on objects as an accessor
method with selector g that returns the current value of the slot, and a mutator
method with selector s which, when supplied with a new value, will remove the
old accessor from the object and install a new accessor to return the new value.

The next portion of the example illustrates the creation of useful boolean ob-
jects using the new utilities. Firstly, a slot with accessor Boolean and mutator
Boolean : is created in the Lobby and initialized to hold a fresh clone of Root.
The object, accessed by invoking the Boolean accessor method on the Lobby,
is set to delegate to itself so that new clones will delegate to it, as in the first
part of example. Next, two new boolean objects, True and False, are similarly
defined as clones of Boolean. A method i fThenFElse, serving as a useful control
structure, is defined on both so that it will select one of two closures to apply
depending on which boolean object it was invoked upon. True applies the first
supplied closure, while False applies the second supplied closure. For exam-
ple, ifThenElse(True(Lobby), Afb.Root, A fb.Lobby) if invoked would evaluate
to Root.

The final portion of the example demonstrates the use of inherited methods.
A method = is defined on Boolean so that if no other methods apply, it will
by default return False. Specialized versions of = are defined on each of the
two boolean objects such that if both of the arguments are the same, they
will return True. For example, invoking = (T'rue(Lobby), False(Lobby)) would
use the version defined for Boolean and so return False, whereas invoking
= (False(Lobby), False(Lobby)) would use the version defined for False and so
return True.

Figure 13 presents the final running example in the PMD calculus. It still
retains all of the conciseness and descriptiveness as the original PMD-inspired
example and differs little from it, despite being framed in terms of the more
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addSlot
addSlot

Lobby, Animal, Animal :, clone(Root))
Lobby, Fish, Fish :,clone(Animal(Lobby)))
addSlot(Lobby, Shark, Shark :, clone(Animal(Lobby)))
addSlot(Lobby, HealthyShark, HealthyShark :, clone(Root))
addSlot(Lobby, DyingShark, DyingShark :, clone(Root))
addDelegation(Shark(Lobby), HealthyShark(Lobby))
addM ethod(Azxy.swimAway(x), encounter, Fish(Lobby), HealthyShark(Lobby))
addM ethod(Azy.x, encounter, Fish(Lobby), Animal (Lobby))
addM ethod(A\zxy.
seq(removeDelegation(x), addDelegation(x, DyingShark(Lobby))),
fight, HealthyShark(Lobby), Shark(Lobby))
addM ethod(Azy.swallow(x,y), encounter, HealthyShark(Lobby), Fish(Lobby))
addM ethod(Azy.fight(z,y), encounter, HealthyShark(Lobby), Shark(Lobby))

—~ o~ —

Figure 13: Formal PMD example

crude calculus. The PMD semantics sufficiently captures the mechanisms that
lead to the minimal factoring of the running example.

5 Implementation

5.1 Dispatch in Slate

The formalization presented in the previous section leaves open a number of
practical considerations about how to implement the core dispatch algorithm
of PMD. These issues include determining the proper order of delegations, the
candidate set of methods that may be applicable, and finally, the actual rank
of this set of methods and how to represent it. Various optimizations also
expediently reduce the memory and processing requirements of the algorithm.

The programming language Slate [Rice and Salzman, 2004] serves as a canonical
implementation of PMD and utilizes a dispatch algorithm for geared toward a
lexicographic ordering of methods and a number of optimizations, including ef-
ficient encoding of rank vectors, sparse representation of roles, partial dispatch,
and method caching. Slate’s dispatch algorithm shall guide and motivate sub-
sequent implementation discussion.

Figure 14 outlines in pseudo-code a basic version of the dispatch algorithm. The
comparison operator <is as in the formalism and may be chosen to implement
either a partial or lexicographic ordering as desired. The order in which delega-
tions from a given object are pushed onto and popped from the ordering stack
determines the ordering under multiple and non-trivial delegation and should
be chosen as is applicable to the implementation. If one overlooks the necessary
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dispatch(selector, args, n)
{
for each index below n
{
position := 0
push args[index] on ordering stack
while ordering stack is not empty
{
arg := pop ordering stack
for each role on arg with selector and index
{
rank[role’s method] [index] := position
if rank[role’s method] is fully specified
{
if no most specific method
or rank[role’s method] < rank[most specific method]
{
most specific method := role’s method
}
}
}
for each delegation on arg
{
push delegation on ordering stack
}
position := position + 1
}
X
return most specific method

}

Figure 14: Basic dispatch algorithm
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bookkeeping for rank vectors, this algorithm strikingly resembles the message
lookup algorithm utilized by Self.

The process for constructing a depth-first ordering of delegations is straight-
forward. One maintains a stack of visited but not yet ordered objects from
which elements of the ordering are drawn. If the host language allows cyclic
delegation links, one also need maintain a set of objects already visited, easily
represented by marking the objects directly, to avoid traversing the same del-
egation twice. If one further assumes object structure is represented by maps,
as in Self [Chambers et al., 1991], or classes, this visited set may be stored on a
per-map or per-class basis without loss. The stack is then processed by popping
objects off the top, assigning them the next position in the ordering, and then
pushing all their delegations onto the stack unless they were already visited.

Role information is stored directly on the objects themselves (or their map
or class) and each role identifies a potentially applicable method, or rather,
a method that is supported by at least one of the arguments to the method
invocation. One may conveniently collect all the candidate methods and their
ranks while determining the delegation ordering, merely traversing an object’s
roles, for the given argument position and method selector, as it is popped off the
ordering stack. An auxiliary table, which may be cheaply distributed among
the methods themselves, stores the currently determined rank vector of the
method, augmenting the method invocation argument’s respective component
of the rank vector with the current position in the delegation ordering. When
a method’s rank becomes fully determined, the method is noted as the most
specific method (found so far) if it’s rank is less than the previously found most
specific method, or if it is the first such method found. Once the delegation stack
has been fully processed for each method invocation argument, the resulting
most specific method, if one exists, is a method whose rank is both minimal and
fully specified at all argument positions.

5.2 Rank Vectors

One may represent rank vectors themselves efficiently as machine words, with
a fixed number of bits assigned to each component up to some fixed number of
components. If one assumes method arguments have lexicographical ordering,
then simple integer comparisons suffice to compare ranks, where more significant
components are placed in more significant bits of the integer represented in the
machine word. However, if one assigns each component of the rank number a
fixed number of representation bits and if the rank vectors themselves are fixed
size, the maximum length of a delegation ordering that may be reflected in each
component is also effectively fixed as well as the maximum number of method
parameters. One need only provide a fall-back algorithm using arbitrary preci-
sion rank vectors in case the ordering stack is overflown or if an excessive number
of arguments are present at a method invocation. Anecdotally, the majority of
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methods contain small numbers of parameters and inheritance hierarchies (and
similarly delegation hierarchies) are small, so this fall-back algorithm is rarely
necessary. In 40,000 lines of code in the Slate standard library, only one patho-
logical case was found where an ordering capacity of 16 or greater was necessary.
An ordering capacity of 32 sufficed to handle all usable objects, without excep-
tion, and obviated the need for any fall-back algorithm entirely.

This dispatch procedure possesses a worst case algorithmic complexity of O(n*e*r*v(e)*h(m)*c(n)),
where n is the number of arguments to a method invocation, e is the cumulative
number of delegations in the store, m is the number of methods in the store,
r is the number of roles in the store, v(e) is the cost of inserting a delegation
into the visited set and checking membership, h(m) is the cost of mapping
a method to its rank vector, and ¢(n) is the cost of comparing rank vectors.
If one maintains the visited set and rank mapping directly on the objects and
methods, and represents the rank vector as a machine word, then v(e), h(m),
and ¢(n) become effectively constant. The practical complexity of dispatch, in
the best case, thus becomes O(n*e*r). e is usually quite small and constant
as the algorithm only need traverse those delegation links reachable from each
argument and, again anecdotally, delegation hierarchies are usually shallow. r
is also small in practice, as the algorithm only need traverse those roles actually
defined upon an object.

5.3 Sparse Representation of Roles

In Slate, the delegation hierarchy is rooted at one specific object so that certain
methods may be defined upon all objects. However, since this object always
assumes the bottom position in the delegation ordering, any roles defined upon
it will always be found and always be the least specific such roles with respect to
other roles with the same method selector and argument position. These roles
do not aid in disambiguating the specificity of a given method since they occupy
the bottom of the ordering and, in effect, contribute no value to the rank vector.

The majority of methods in the Slate standard library dispatch on the root
object in most arguments positions, so representing these roles needlessly uses
memory and adds traversal overhead to the dispatch algorithm. In the interests
of reducing the amount of role information stored, one need not represent these
roles if one identifies, for each method, the minimum set of roles that need be
found for a rank vector to be fully specified and so allows the size of this set
of roles to be less than the number of actual method parameters. This set
of roles does not contain any roles specified on the root object. A method is
now applicable when this minimum set of roles is found during dispatch, rather
than a set of roles corresponding to all method parameters. In the interests of
reducing duplication of information, Slate stores information about the size of
this minimum set of roles on the method object linked by these roles.
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5.4 Partial Dispatch

Because of Slate’s sparse representation of roles, the dispatch algorithm may
determine a method to be applicable, or rather, it’s minimal set of roles may be
found, before it has finished traversing the delegation orderings of all argument
positions. The basic algorithm, however, requires that the entire delegation or-
dering of all arguments be scanned to fully disambiguate a method’s specificity
and ensure it is the most specific. The majority of methods in the Slate stan-
dard library not only dispatch on fewer non-root objects than the number of
method parameters, but only dispatch on a single non-root object, and are, in
effect, only singly polymorphic. Scanning the entire delegation orderings for all
objects under such conditions is wasteful and needless if an applicable method
is unambiguously known to be the most-specific method and yet dispatch still
continues.

The key to remedying this situation is to take advantage of Slate’s lexicographic
ordering of method arguments and also note that a role not only helps identify
an applicable method, but a role also indicates that some method is possibly
applicable in the absence of information about which other roles have been
found for this method. If no roles corresponding to a method are found, then
the method is not applicable. If at least at least one role corresponding to a
method is found, then this method may become applicable later in the dispatch
and effect the result should its determined rank vector precede the rank vectors
of other applicable methods.

Dispatch in Slate traverses method arguments from the lexicographically most
significant argument to the least significant argument. So, for any role found,
it’s contribution to the rank vector will necessarily decrease with each successive
argument position traversed. If some method is known to be the most specific
applicable method found so far, and a role for a contending method is found
whose contribution to its respective rank vector would still leave it less specific
than the most specific method, then no subsequent roles found for the contend-
ing method will change the method result as they contribute lexicographically
less significant values. Thus, one only need maintain the partial rank vector,
representing the contention for most specific method, corresponding to the lexi-
cographically most significant roles found up to the current point of traversal. If
any applicable method’s rank vector precedes this partial rank vector, then it is
unambiguously the most specific method, since there are no other more specific
methods that may later become applicable.

For example, if one method singly dispatches on the Shark prototype, and an-
other similarly named method dispatches on the Animal prototype in a lexi-
cographically less significant or equally significant argument position, then dis-
patch will determine the Shark prototype’s method to be applicable as soon as
the Shark prototype is traversed and before traversing the Animal prototype.
If no other roles were found at lexicographically more significant positions, or
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on preceding objects in the delegation ordering for the lexicographically equal
argument position, then there is no possible contention for the resulting most
specific method, and the Shark prototype’s method must be the most specific.

Intriguingly, this optimization reduces the cost of dispatch to the amount of
polymorphism represented in the entire set of candidate methods. So, if all
methods only dispatch on their first argument, the dispatch algorithm effec-
tively degenerates to a traditional single dispatch algorithm and need never
examine more than the first argument or traverse farther down the delegation
hierarchy than where the first candidate method is found. The algorithm then
only incurs the cost of maintaining the rank information above the cost of sin-
gle dispatching. Single dispatching becomes nothing more than a trivial and
more general optimization of the PMD dispatch semantics. Further, almost all
the dispatches in the Slate standard library (approximately 90%) were found to
terminate early due to this optimization, rather than requiring a full traversal.
This number closely corresponds to the fraction of methods dispatching on fewer
non-root objects than their number of arguments, which supports this intuition.

5.5 Method Caching

Various global and inline method caching schemes may be extended to fit the
dispatching algorithm and provide an essentially constant time fast-path for
method invocation under PMD. Given partial dispatching and if for each method
selector one identifies the global polymorphism of the set of methods it identifies
(the set of argument positions any roles have been specified in), one only need
store the significant arguments positions, as given by the global polymorphism,
as the keys of the cache entries. However, cache entries must still have a capacity
to store up to the maximally allowable amount of polymorphism for caching.
In the degenerate case of global polymorphism of only the first argument, this
extended caching scheme degenerates to an ordinary single dispatch caching
scheme.

In the Slate standard library, a simple global cache indexed only by method
selector and validated against the maps of the method arguments as by this
scheme achieves a cache hit rate of approximately 80% and yields significant
speed-ups above and beyond the contributions of partial dispatch, by avoiding
any delegation or role traversal altogether.

6 Conclusions

PMD provides a coherent unifying approach to three disparate paradigms:
prototype-based languages, multi-method languages, and subject-oriented lan-
guages. It offers insights into these disparate mechanisms and why they address
orthogonal aspects of object polymorphism. Its implementation in Slate further
draws new explicit parallels with existing techniques for implementing single
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dispatch and why single dispatch algorithms are degenerate cases of a more
general multiple dispatch algorithms.

PMD offers programmers new ways to reason about and construct their pro-
grams that leverage the extreme polymorphism afforded by the paradigm. The
programmer need no longer choose between differing conceptions of object-
oriented programming. He may utilize the unified concept to its fullest extent
without the distraction of integrating conflicting approaches. He is no longer

limited by the lesser of evils.
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