
1

Quality and Speed in Linear-scan Register Allocation

Omri Traub, Glenn Holloway, Michael D. Smith
Harvard University

Division of Engineering and Applied Sciences
Cambridge, MA 02138

{otraub, holloway, smith}@eecs.harvard.edu

Abstract
A linear-scan algorithm directs the global allocation of reg-
ister candidates to registers based on a simple linear sweep
over the program being compiled. This approach to register
allocation makes sense for systems, such as those for
dynamic compilation, where compilation speed is impor-
tant. In contrast, most commercial and research optimizing
compilers rely on a graph-coloring approach to global regis-
ter allocation. In this paper, we compare the performance of
a linear-scan method against a modern graph-coloring
method. We implement both register allocators within the
Machine SUIF extension of the Stanford SUIF compiler
system. Experimental results show that linear scan is much
faster than coloring on benchmarks with large numbers of
register candidates. We also describe improvements to the
linear-scan approach that do not change its linear character,
but allow it to produce code of a quality near to that pro-
duced by graph coloring.

Keywords: global register allocation, graph coloring, linear
scan, binpacking

1 Introduction

Fast compilation tools are essential for high software pro-
ductivity. The register allocation phase of code generation is
often a bottleneck, and yet good register allocation is neces-
sary for making today’s processors reach their peak effi-
ciency. It is thus important to understand the trade-off
between speed of register allocation and the quality of the
resulting code. In this paper, we investigate a fast approach
to register allocation, called linear scan, and we compare it
to the widely-used graph-coloring method. This fair com-
parison shows linear scan to be faster than coloring under
most conditions, especially on programs with large numbers
of variables competing for the same registers. Since emit-
ting high quality code was our first priority in implementing
our linear scan allocator, we describe some novel improve-

ments to the linear-scan approach that improve output code
without destroying the linear character of the algorithm.

Despite the increasing speeds of modern processors, it has
never been more important to find and use efficient compi-
lation techniques. The demand for highly optimizing code
generation is increasing as processors become more com-
plex. One response is the trend towards whole-program
optimization [6,15]. The success of this approach depends
heavily on near-linear optimization techniques. Another
growing trend seeks to optimize application code at load or
run time. For example, Hoeltzle et al. [10] and Poletto et al.
[13] describe the benefits of techniques in adaptive optimi-
zation and dynamic code generation respectively. To be
acceptably responsive, these techniques must operate at
speeds measured in a reasonable number of cycles per gen-
erated instruction.

Both graph-coloring and linear-scan allocators use liveness
information to find an assignment of register candidates to
the machine registers. To achieve this goal, a graph-coloring
allocator summarizes liveness information as an interfer-
ence graph, with nodes representing register candidates and
edges connecting nodes whose corresponding candidates
are live at the same time and therefore cannot coexist in a
register. For a k-register target machine, finding a k-coloring
of the interference graph is equivalent to assigning the can-
didates to registers without conflict.

The standard graph-coloring method, adapted for register
allocation by Chaitin et al. [4,5], iteratively builds an inter-
ference graph and heuristically attempts to color it. If the
heuristic succeeds, the coloring results in a register assign-
ment. If it fails, some register candidates are spilled to mem-
ory, spill code is inserted for their occurrences, and the
whole process repeats. In practice, the cost of the graph-col-
oring approach is dominated by the construction of succes-
sive graphs, which is potentially quadratic in the number of
register candidates. Since a single compilation unit may
have thousands of candidates (including compiler-generated
temporaries), coloring can be expensive.

In contrast to graph coloring, a linear-scan allocator begins
with a view of liveness as a lifetime interval. A lifetime
interval of a register candidate is the segment of the pro-
gram that starts where the candidate is first live in the static
linear order of the code and ends where it is last live. A lin-
ear-scan allocator visits each lifetime interval in turn,
according to its occurrence in the static linear code order,
and considers how many intervals are currently active. The
number of active intervals represents the competition for

Appears in the Proceedings of the ACM SIGPLAN 1998 Confer-
ence on Programming Language Design and Implementation,
pages 142–151, June 1998.

2

available machine registers at this point in the program.
When there are too many active lifetimes to fit, a simple
heuristic chooses which of them to spill to memory and the
scan proceeds. Because it only tries to detect and resolve
conflicts locally, rather than for an entire compilation unit at
once, linear scan can operate faster than graph coloring. Pre-
vious linear-scan allocators run in time linear in the size of
the procedure being compiled.

In Section 2, we describe our version of a linear-scan alloca-
tor. Our algorithm is based on a variant of linear scan, called
binpacking, that Digital Equipment Corporation uses in its
commercial compiler products [1]. We describe several
improvements to the binpacking approach. The most signif-
icant change involves our algorithm’s ability to allocate reg-
isters and rewrite the instruction stream in a single scan; all
current linear-scan algorithms of which we are aware allo-
cate and rewrite in separate passes. By allocating and
rewriting simultaneously, we introduce flexibility into the
register allocation process by giving spilled allocation can-
didates multiple chances to reside in a register during their
lifetimes. Because of this flexibility, our approach requires a
second pass to resolve the linear-scan assumptions with the
non-linearity of a procedure’s control-flow graph (CFG).
Because the second pass entails a dataflow analysis, its
worst-case asymptotic complexity is quadratic in the pro-
gram size. However, as we explain in Section 2.6, it can be
engineered to give linear performance in all cases. In Sec-
tion 3, we describe our experiments, which use the Machine
SUIF code generation framework to compare the perfor-
mance of our linear-scan algorithm against a modern graph
coloring algorithm [7]. Section 4 discusses related efforts in
linear-scan register allocation, and Section 5 summarizes
our contributions.

2 Second-chance binpacking

Two important goals guide the design of our register alloca-
tion algorithm: speed of allocation and quality of code pro-
duced. In the spirit of the linear-scan family of allocators,
we seek to keep the allocation time to a minimum by avoid-
ing expensive, iterative computations such as the ones used
in graph-coloring register allocation. Furthermore, unlike
any other allocation technique of which we are aware, the
algorithm described below performs allocation and code
rewriting in a single pass over the instructions of a proce-
dure. This approach influences many of our design deci-
sions. After Section 2.1 introduces the general concepts
behind a binpacking allocator, Section 2.2 outlines the tech-
nique and focuses on the novel aspects of our algorithm.
Section 2.3 describes how we handle spills during the linear
allocate/rewrite phase, while Section 2.4 discusses the sec-
ond phase of our algorithm which resolves the assumptions
made during the linear first phase with the non-linear flow
of a CFG. Section 2.5 presents two optimizations related to
the creation of spill code and the elimination of moves. Sec-
tion 2.6 summarizes the computational complexity of our
algorithm.

2.1 Allocation candidates and lifetime holes

We begin by describing some preliminary concepts about
the objects that we wish to allocate. In our allocator, we
seek to assign registers to both program variables and com-
piler-generated temporaries. We shall refer to all allocation
candidates generically as temporaries.

When examining the lifetime of a temporary, we observe
that it may contain one or more intervals during which no
useful value is maintained. These intervals are termed life-
time holes. Figure 1 illustrates several kinds of lifetime
holes that can appear in the lifetime of a temporary. Even if
we assign a register r to a temporary t for t’s entire lifetime,
we can assign another temporary u to r during t’s lifetime if
u’s lifetime fits inside a lifetime hole in t. In Figure 1, tem-
porary T3 fits entirely in T1’s lifetime hole, and thus both
could be assigned the same register. We use a single reverse
pass over the code to compute lifetimes and lifetime holes.

2.2 The binpacking model

The register allocation model that we adopt views the
machine registers as bins into which temporary lifetimes are
packed. The constraint on a bin is that it may contain only
one valid value at any given point in the program execution.
Assuming that we have an infinite resource machine with an
unbounded number of registers and that our task is to
choose the smallest subset of registers that can be assigned
to lifetimes, we can minimize this number in two ways.
First, we can assign two non-overlapping lifetimes to the
same register. Second, we can assign two temporaries to the
same register if the lifetime of one is entirely contained in a
lifetime hole of the other. Under both these approaches, the
constraint on a register (bin) is preserved.

A binpacking allocator scans the code in a forward linear
order, processing the temporaries as they are encountered in
the program text. The processing of a temporary t involves
the allocation of t to a register if t is not currently assigned a
register. We can view an unoccupied register as containing a
lifetime hole that extends to a later point in the program
where it is no longer free. With this view, the selection of a
register to allocate to t involves the search for a register with
a hole big enough to contain the entire lifetime of t. If we
have multiple registers with holes large enough to contain
t’s entire lifetime, we heuristically choose the register with
the smallest hole that is larger than t’s lifetime. Once we
assign t to a register r, we would replace all references to t
with references to r (assuming infinite registers).

In reality, the number of registers available on a given
machine is fixed. If at some point in the linear scan there are
more overlapping lifetimes than there are available regis-
ters, some of these values will need to be spilled into mem-
ory. The traditional approach to linear-scan allocation first
walks the sorted list of lifetime intervals deciding which
temporaries live in a register and which live in memory. A
second phase then scans the procedure code and rewrites
each operand with a reference to the appropriate register or
to memory. For the purposes of discussion, we assume a
load/store architecture where a register is always required,

3

and so a reference to a spilled temporary is modeled as a
point lifetime interval corresponding to the load or store of
the spilled temporary. These point lifetimes are always
assigned a register during allocation.

2.3 Second-chance allocation

Early on in the design of our binpacking register allocator,
we noticed that it is possible to allocate registers to tempo-
raries and rewrite temporary references all in a single linear
pass over the program text. When we encounter a temporary
t for the first time, we interrupt the rewriting process and
determine an allocation for t. If we must spill another tem-
porary to create a free register for t, we proceed in a manner
identical to the approaches that separate the allocation and
rewriting phases—a temporary u currently residing in a reg-
ister r is spilled to memory and t is assigned to r. Such spill-
ing decisions are based on a priority heuristic that compares
the distance to each temporary’s next reference, weighted
by the depth of the loop it occurs in, picking the lowest-pri-
ority temporary for eviction. Our system is unique among
linear-scan allocators in that a spill point marks a split in the
lifetime of the evicted temporary u. All references to u up to
this point have already been rewritten to use register r. Our
algorithm does not go back and change this fact. The spill
decision affects only future references to u.

When encountering a later reference to this spilled tempo-
rary u, we must find it a register to occupy during the
instruction that uses it. If the reference is a read of u, we
find a free register r (possibly evicting another temporary in
the process) and insert a load of u’s memory location into r.
Once we have allocated u to this new register r, we allow u
to remain in r until some higher-priority temporary evicts it

(or u’s lifetime ends). In effect, we have split u’s lifetime
again. The benefit of this approach is that we do not have to
reload u if we make another reference to it in the near
future. We do not need any special mechanisms to “prefer-
ence” a later spill load to the same register as the last spill
load [3]. In this approach, we optimistically, rather than pes-
simistically, plan for u’s future references. Since we already
have to support lifetime splits due to our emphasis on a sin-
gle allocate/rewrite pass, our allocator supports this optimis-
tic approach naturally.

If the next reference to a spilled temporary u is a write, our
allocator performs a similar optimistic decision. We allocate
u to a register r (possibly spilling the current temporary in
this register), and we postpone the store of this new value
for u back into memory until some other temporary causes
the allocator to evict u. All following references to u are
rewritten to use r, and if we reach the end of u’s lifetime, we
may never have to produce the postponed store.

We call our optimistic handling of spilled temporaries sec-
ond chance, because we give temporaries a second (or third,
etc.) chance at finding a register home. This second-chance
approach is completely generalized to provide a temporary
lifetime with a (potentially) new register for every split in its
lifetime.

There is one other optimization that we perform while allo-
cating and rewriting. Similar to the case where we do not
create another load of a spilled temporary t from memory if
t is already in a register, we can optimize the rewrite process
so that it does not create a store of a temporary u currently
residing in a register r when evicting u, if the value for u in r
matches the value for u in memory. To perform this optimi-
zation, we maintain information about the consistency of

Figure 1. Example illustrating the concept of a linear ordering of a procedure’s basic blocks, and the lifetimes and lifetime holes for the
temporaries in this procedure. Notice that a block boundary can cause a hole to begin or end in the linear view of the program.

B1

T2 ← ..

.. ← T1

T3 ← T2

T4 ← ..

.. ← T3

T1 ← ..

T4 ← ..

.. ← T1

.. ← T4

T4 ← ..

.. ← T4

B2 B3

B4

B1

T1

T2

T3

T4

B2 B3 B4

w

w

r r

r

w r

w w r w

Linear-ordering of blocks

T4’s lifetime
Lifetime hole

in T4

(a) An example CFG
with temporary lifetimes overlaid.

(b) A linear ordering for the example CFG
with lifetime holes indicated for each temporary.

r

4

the value in r with respect to the value in u’s memory home.
Any spill of u to or from memory makes the memory home
consistent with r. Any write of a value to r invalidates the
consistency of the memory and register values. When we
come to a point where we decide to evict u from r, we avoid
the generation of a store spill if u is evicted from r during
one of u’s lifetime holes (a store is not needed since the next
reference will overwrite the current value) or if the values of
u in r and in memory are consistent.

2.4 Resolution

As we mentioned earlier, the above approach to register
allocation comes with a cost. In giving a temporary a second
chance and multiple register locations at different intervals
in the temporary’s lifetime, we can potentially create con-
flicts in the allocation assumptions at the basic block bound-
aries. The linear processing of the allocation/rewrite phase
of our approach incompletely models the program control
flow. To maintain program semantics, we follow the alloca-
tion/rewrite phase with a traversal of the CFG edges, resolv-
ing any mismatch in the allocation assumptions across each
edge.

We can resolve any conflicts between the allocation
assumptions across CFG edges by inserting an appropriate
set of load, store, or move instructions. During the alloca-
tion pass we maintain a map that gives us information on
the location of a temporary at the top and bottom of each
basic block. Across a control flow edge, there are three pos-

sibilities that require resolution. If the temporary was in a
register at the bottom of the predecessor block but in mem-
ory at the top of the successor block, we insert1 a store
instruction (but only if a temporary’s allocated register and
memory home are inconsistent). If the temporary moved
from memory to a register, we insert a load instruction. If
the temporary was in two different registers across the edge,
we insert a move instruction. While processing an edge, we
are careful to model the data movement across the edge in a
manner that produces the correct resolution instructions in
the semantically-correct order, even in the case where two
(or more) temporaries swap their allocated registers. This
processing is similar to replacing SSA phi-nodes by a set of
equivalent move operations [12]. Figure 2 gives a simple
example of resolution.

The linear processing of the CFG can also lead to unneces-
sary spill loads. Continuing with the example in Figure 2,
assume that we remove the shortest lifetime from block B3.
With this change, the allocator as currently described would
still insert the load of T1 into R2 for the rewrite in i3. This
is because the linear ordering assumes that the last action in
block B2 for T1 left T1 in memory. This is a pessimistic
assumption since there is no control-flow edge directly con-
necting B2 and B3. We would like to be able to take advan-

1. If the block at the head of the edge has only a single predecessor, we
place the resolution code at the top of this block. If the block at the tail of
the edge has only a single successor, we place the resolution code at the
bottom of this block. If the edge is a critical edge, we split the edge, safely
creating a location to place the resolution code.

i8: ld R2,T1

{T1 in R1}

{T1 in mem}

Figure 2. Example of conflict resolution at CFG edges. Assume that none of the temporaries contain lifetime holes and that we have
only two registers R1 and R2. When the allocator encounters i1 in B1, it assigns T1 to R1 and rewrites T1 in i1 and then i2 to use R1.
When the allocator encounters the third lifetime in B2, it spills T1 to memory (i5). When it encounters i3 in B3, it inserts a load of T1

from memory (i6); this time T1 is given register R2—a second-chance allocation. The linear scan completes after rewriting T1 in i3 and
then i4 to use R2. During resolution, the allocator inserts a store (i7) at the top of B3 and a load (i8) at the bottom of B2.

B1

i2: .. ← T1

i1: T1 ← ..

i3: .. ← T1

i4: .. ← T1

B2 B3

B4

(a) An example CFG before allocation. The CFG
contains 5 temporary lifetimes, but only T1’s

(b) The CFG after allocation. Only instructions associated
with T1 are shown. The linear allocation order is B1-B2-B3-B4.

B1

i2: .. ← R1
...
i5: st R1,T1

i1: R1 ← ..

B2 B3

B4

i6: ld R2,T1
i3: .. ← R2

i4: R2 ← ..

{T1 not live}

{T1 in R1}

{T1 in mem}

{T1 in R2}

{T1 in R2}

i7: st R1,T1

references are shown. The allocation assumptions for T1 before resolution are shown as sets
at the top and bottom of each block.

5

tage of the fact that one of our registers will be unused from
the top of B3 till i3 and thus allocate T1 to this register for
the entire length of B3. The best choice is to allocate T1 to
R1 at the top of B3 (eliminating the generation of any reso-
lution code across the edge B1-B3); however, this choice
would require us to reconstruct the binpacking state when
the linear traversal transitions between two blocks not con-
nected by a control-flow edge. We consider this too expen-
sive an operation considering that R1 may be needed for
another temporary (as in the original example in Figure 2)
before the use of T1 in i3. An alternative solution is to run a
later code motion pass that tries to sink stores and hoist
loads until they meet. When loads and stores to the same
stack location meet, we can replace the two operations with
a move from the store’s source register to the load’s destina-
tion register. The resulting move may then be eliminated by
subsequent copy propagation and dead-code elimination
passes.

Though we do not perform any dataflow analyses during
register allocation to minimize the generation or improve
the placement of spill code, we do perform, during the reso-
lution phase of our allocator, one dataflow analysis for cor-
rectness. If we decided not to insert a store instruction when
evicting a temporary (see Section 2.3), we used the fact that
the memory and register contents were consistent. This
assumption may hold along one or more paths through the
control flow graph, but not necessarily through all paths
reaching the point where the consistency information was
used. In order to determine if and where spill stores need to
be inserted to guarantee consistency along all paths, we
solve the following iterative bit-vector dataflow problem.

Each bit vector used in our analysis requires as many bits as
there are allocation temporaries that are live across basic
block boundaries. During the linear scan, we maintain a
working bit vector called ARE_CONSISTENT. Let At be the
bit in ARE_CONSISTENT corresponding to a temporary t.
At is set as long as t is allocated to a register r and the con-
tents of r are consistent with t’s memory home. As
described in Section 2.3, a write to r clears At, and a spill of
t sets At. We will not generate a spill store for t during evic-
tion of t from r if At is set. We save a local copy of
ARE_CONSISTENT at the end of each basic block. This
copy is used in the subsequent dataflow analysis.

Also during the linear scan, we generate the local GEN and
KILL sets for each basic block b. The bit vector
WROTE_TR(b) corresponds to the KILL set. Let Wt be the
bit in WROTE_TR(b) corresponding to a temporary t. Wt is
initially clear; it is set whenever a register r allocated to t is
written in b. The bit vector USED_CONSISTENCY(b) cor-
responds to the GEN set. Let Ut be the bit in
USED_CONSISTENCY(b) corresponding to a temporary t.
Ut is initially clear; it is set whenever Wt is clear and we
used At to inhibit the generation of a spill store. In other
words, Ut is set whenever the inhibiting of a spill store relies
on assumptions of consistency not local to b.

Once we have completed the linear scan for the allocate/
rewrite phase, we iterate to find a fixed point for the follow-
ing dataflow equations:

For all blocks b, we initially set USED_C_in(b) equal to
USED_CONSISTENCY(b).

During resolution processing, we insert a spill store for a
temporary t during the processing of a CFG edge p→s if the
bit for t in USED_C_in(s) is set and the bit in
ARE_CONSISTENT(p) is clear. These edges represent the
beginnings of paths reaching program points where the con-
sistency of t’s register and memory home was exploited, but
where the register and memory were not consistent. The
placement of this spill store follows the same placement
rules as the other resolution code.

2.5 Move optimizations

Modern computing systems typically impose usage conven-
tions for registers. The caller-saved registers, for example,
are not preserved across procedure calls. As described so
far, our algorithm only allows a temporary to be assigned to
a register if that register is free for the temporary’s entire
remaining lifetime. Under such a restriction, all temporaries
live across calls compete solely for the callee-saved regis-
ters. In a graph-coloring register allocator, this is equivalent
to adding an interference edge to the caller-saved registers.

In our algorithm, we represent the constraints on register
usage by considering the intervals in which a register is free
for use as its lifetime holes. A temporary can now fit inside
a register’s lifetime hole or another temporary’s lifetime
hole. In order to overcome the problem described above, we
allow in our algorithm for a temporary to be assigned to a
register with a lifetime hole that is not large enough to con-
tain the entire lifetime. The algorithm heuristically searches
for the largest of these insufficiently-large holes. When a
register’s lifetime hole expires, we check to see if there is
still a temporary contained in it. If there is one, we evict the
temporary from that register at this point (corresponding to
a call site, for example).

When evicting a temporary t from a register rt that is needed
by some convention, we could insert a spill store, reloading
its value the next time we need it through our second-chance
mechanism. But it might be true at this point that some other
register rs now contains a hole that could contain t’s remain-
ing lifetime. If t’s lifetime fits in the lifetime hole in rs, it is
more efficient to insert a move from rt to rs now than insert
a store now and a load later, provided that t is not evicted
from rs before t’s next reference. We therefore insert the
move now only if we can find an empty register rs and if
evicting t from rt would result in a spill store. We refer to
this mechanism as early second chance.

Although a move instruction can be more efficient than a
load-store instruction pair, we also want to eliminate moves
during register allocation when possible. During our linear
scan, we perform a check, in the spirit of move coalescing,

USED_C_out b() USED_C_in s()
s succ b()∈

∪=

USED_C_in b() USED_CONSISTENCY b()=

 USED_C_out b() WROTE_TR b()–()∪

6

that attempts to assign both the source and destination of a
move to the same register; such moves are eliminated by a
separate peephole pass. The check works as follows: once
we have assigned a register to the source of a move instruc-
tion, we check to see if that register has a hole starting
immediately after the move’s source use and if the lifetime
of the move’s destination temporary fits within this hole. If
so, we bypass the normal allocation mechanism and rewrite
the move destination to use the same register as the move
source.

We have implemented only a limited version of the move
elimination optimization. In order to satisfy the Digital
Alpha calling convention, our Alpha code generator inserts
move operations from the parameter registers to the sym-
bolic names of the parameters at the top of a procedure. We
can easily eliminate these moves using our move optimiza-
tion. If we leave them in the code, they can noticeably
degrade the performance of call-intensive programs. Our
current implementation performs the move optimization
only when the source of a move is already in a register. It
would be straightforward to extend our implementation to
attempt move optimization after allocation of a general
move source.

2.6 Complexity analysis

The conflict resolution step of our algorithm, which we feel
is essential for maximizing the quality of the output code,
does not have a linear time bound. Its worst-case complex-
ity is dominated by that of the dataflow calculation
described above. However, this dataflow analysis can be
replaced so that our allocator runs in linear time.

The first two phases of the algorithm, computation of life-
times and holes, then allocation and rewriting, are mani-
festly linear.2 Each is a single sweep over the instructions of
the program being compiled. Allocation has a constant fac-
tor proportional to the number of available registers, since it
may scan the register state in order to choose and assign a
register.

The sweep over edges during conflict resolution is also
effectively linear: in real programs most flow nodes have an
out degree of one or two so that the number of edges grows
as the number of nodes, and not quadratically.

If the equations for USED_C_in(b) and USED_C_out(b)
given above are solved by the standard iterative bit-vector
calculation, then conflict resolution has a worst-case run-
ning time of O(N2) bit-vector operations, where N is the size
of the program. If the size of the bit-vectors is the number of
temporaries, then the bound is cubic, since the total number
of register candidates is typically proportional to the size of
the program. The common experience with the standard
method, however, is that it terminates in two or three itera-

tions at most, which brings its time cost down to O(N) bit-
vector operations.

In our implementation, the time spent in this dataflow calcu-
lation rarely reaches one percent of the time consumed by
the overall algorithm. We have therefore not attempted to
tune this phase. For situations in which strict linearity is
necessary, one could easily replace our iterative dataflow
calculation with a more conservative solution. To ensure
that we avoid a spill store only when legal, we can conser-
vatively initialize the working copy of the
ARE_CONSISTENT bit vector at the top of each block b
encountered during the linear scan. We initialize it with the
intersection of the saved ARE_CONSISTENT bit vectors at
the bottom of all b’s predecessor blocks. We assume that
any predecessor with an uninitialized bit vector clears all
bits in the working bit vector.

In our experiments, conflict resolution including dataflow
analysis has never consumed more than five percent of the
total time for allocation. Sacrificing strict linearity has not
had a major impact.

3 Experimental evaluation

To compare fairly our linear-scan register allocator with a
graph-coloring allocator, we have implemented them both
in the Machine SUIF extension [14] of the Stanford SUIF
compiler system [16]. SUIF makes it easy to mix and match
compiler passes. Keeping the rest of the compiler fixed, we
created two alternative register allocation passes, identical
in every respect except the central register assignment algo-
rithms. In both passes, for example, we use shared libraries
to construct CFGs and perform liveness and loop-depth
analysis, with the results attached to the CFG prior to regis-
ter allocation. Moreover we use a common set of utilities for
scanning the code and updating it to insert spill instructions
or to reflect register assignments. Loop depth is used in the
same way to weight occurrence counts in both allocators. In
each case, register allocation is preceded by dead code elim-
ination and followed by a peephole optimization pass that
removes moves that can safely collapse into the preceding
or succeeding instruction.

The coloring method used is an implementation of that
described by George and Appel [7]. This is a pure coloring
approach in the style originated by Chaitin [5] and refined
by Briggs et al. [2]. Its principal departure from that style is
that it integrates register coalescing (copy propagation) into
the coloring phase of allocation, rather than performing it
repeatedly beforehand in a loop. The usual Chaitin-Briggs
method builds a new interference graph after each success-
ful round of coalescing. George and Appel take the costly
graph-building operation out of the inner loop. They report
that it also improves code significantly by eliminating more
copy instructions. Our implementation is faithful to the pub-
lished algorithm [7] with two exceptions:

• We use a lower-triangular bit matrix, rather than a
hash table, to record the adjacency relation of the
interference graph.

2. We assume the liveness information used in finding lifetimes and
holes is available when register allocation begins. The cost of gathering
and storing it is amortized over many optimizations in a typical optimizing
compiler.

7

• We perform liveness analysis only once, before allo-
cation, rather than once per round of coloring. For
both linear scan and graph coloring, temporaries that
are live only within a single basic block are excluded
from dataflow analysis, which greatly reduces bit
vector sizes and makes repeated dataflow analysis
unnecessary between coloring iterations.

The latter simplification is possible for both linear scan and
graph coloring, because the temporaries generated by spill
code insertion are live only within a single basic block. Glo-
bal liveness information is not affected by such temporaries.

When targeting the Digital Alpha, our graph-coloring allo-
cator deals separately with general-purpose registers and
floating-point registers. On current Alpha implementations,
data moved between register files must go through memory,
and each register operand of a given instruction can only
reside in one file or the other. With coloring, the non-linear
costs of building the interference graph and choosing tem-
poraries to spill make it more efficient to solve the two
smaller problems separately. (This is the approach used, for
example, in the compiler for which George and Appel
designed their algorithm.) Our linear-scan algorithm, on the
other hand, processes both register files at once.

3.1 Run times

We compare the quality of generated code on a number of
benchmarks. Table 1 presents run-time results both in terms
of instruction counts and actual run times. For each metric,
we also calculate the ratio of the result under linear scan to
the result under graph coloring. Larger ratios mean poorer
performance of the linear-scan-produced executable. The
target machine for these experiments is a Digital Alpha run-
ning Digital UNIX 4.0. Most benchmarks are from the
SPEC92 suite, except for compress and m88ksim (SPEC95)
and sort and wc (UNIX utilities). The instruction count
results were obtained using the HALT tool within Machine
SUIF to instrument each benchmark after code generation.
The run-time results were obtained with the UNIX time

command on a lightly-loaded Alpha. Each time is the best
of five consecutive runs.

Overall, our approach produces executables that are of a
quality near to those produced by coloring. To help explain
the variation in the instruction count results, Table 2 pre-
sents a statistic indicating what percentage of the total
dynamic instruction count was due to spill code inserted by
the register allocator. This counts load, store, and move
instructions inserted for allocation candidates only. Five of
our benchmarks (alvinn, li, tomcatv, compress, and wc) had
no spill code under either approach. For these applications,
the difference in the dynamic instruction counts in Table 1 is
entirely due to the lack of move coalescing in our algorithm.
We expect that we could remove much of this difference by
following register allocation by copy propagation and dead-
code elimination optimizations.

Benchmark
Ratio

(binpack/GC)
Ratio

(binpack/GC)

alvinn 5859032035 5850062031 1.002 20.56 20.67 0.995

doduc 1610607538 1565260889 1.029 7.36 7.23 1.018

eqntott 2782873030 2777476231 1.002 6.92 6.90 1.003

espresso 1510435454 1390526882 1.086 3.54 3.34 1.060

fpppp 6775315066 6262634084 1.082 25.79 24.73 1.043

li 9878244999 9694580392 1.019 23.91 24.76 0.966

tomcatv 6531688057 6531662363 1.000 14.29 14.36 0.995

compress 94956007702 91999060755 1.032 281.30 275.79 1.020

m88ksim 1112471957 1101374080 1.010 2.97 2.90 1.024

sort 1030126044 989670114 1.041 4.35 4.02 1.082

wc 1046734 1046722 1.000 0.92 0.91 1.011

Run time (sec)Instruction counts
Second-chance

binpacking
Graph

coloring
Second-chance

binpacking
Graph

coloring

Table 1: A comparison of the dynamic instruction counts and the run times of executables using either our second-chance
binpacking approach or George/Appel’s graph-coloring approach.

Benchmark

alvinn 0% 0%
doduc 0.460% 0.492%
eqntott 0.001% 0.000%
espresso 0.783% 0.148%
fpppp 18.561% 13.397%
li 0% 0%
tomcatv 0% 0%
compress 0% 0%
m88ksim 0.030% 0.045%
sort 1.339% 0.905%
wc 0% 0%

Second-chance
binpacking

Graph
coloring

Table 2: Percentage of total dynamic instructions due to
spill code for each allocation approach. If no spill code

was inserted during register allocation, the percentage is
reported as simply “0%”.

8

For the applications with spill code, Figure 3 presents a
detailed look at the composition of the spill code produced
both by second-chance binpacking and by graph coloring.
In both doduc and m88ksim, binpacking produces less spill
code than coloring. The majority of the difference is due to
the insertion of extra spill loads during coloring. Our bin-
packing produces more spill code than coloring for eqntott,
espresso, fpppp, and sort. A significant proportion of this
increase appears due to extra stores (resolution and evic-
tion). These stores can, as in the case of eqntott, lead to a
large number of resolution loads. A review of the output
code shows that a global optimization pass run after alloca-
tion can eliminate unnecessary load/store pairs as well as
partially redundant spill instructions using hoisting and
sinking techniques.

In order to evaluate the advantages of our second-chance
binpacking over traditional two-pass binpacking, we created
a version of our allocator that assigns a whole lifetime to

either memory or register. This implementation still takes
advantage of lifetime holes during allocation. We observed
two classes of applications with respect to the performance
of this allocator. The first, represented best by the word-
count (wc) benchmark, contains those applications whose
performance degrades substantially under binpacking with-
out second chance. The wc benchmark ran 38% slower
(1445466 vs. 1046734 dynamic instructions) when allo-
cated using two-pass binpacking than it did when allocated
with our second-chance approach. The wc benchmark has a
large number of temporaries that are live throughout a loop
that contains a procedure call to an I/O routine. Our second-
chance mechanism manages to allocate some of the tempo-
raries to caller-saved registers, evicting them just before the
procedure call but avoiding unnecessary stores. The two-
pass binpacking approach, however, is not able to use the
caller-saved registers (there is no hole in a caller-saved reg-
ister large enough to contain the lifetimes of the temporaries

0.0

0.5

1.0

1.5

do
du

c-
b

do
du

c-
c

eq
nt

ot
t-b

eq
nt

ot
t-c

es
pr

es
so

-b

es
pr

es
so

-c

fp
pp

p-
b

fp
pp

p-
c

so
rt-

b
so

rt-
c

m
88

ks
im

-b

m
88

ks
im

-c

Benchmark-scheme

S
pi

ll
co

de
 c

ou
nt

s
no

rm
al

iz
ed

 to
 b

in
pa

ck
in

g

Figure 3. A categorization of the spill code inserted by each allocator. Results for our binpacking approach are labelled with a “-b”
while those for coloring are labelled with “-c”. For each benchmark, we normalize the counts to the total spill code inserted with
binpacking. We have separated the “eviction” spill code inserted during our linear scan and the coloring algorithm’s spill phase

from the “resolve” spill code inserted during our resolution phase.

evict loads

evict stores

evict moves

resolve loads

resolve stores

resolve moves

9

live across the call), thus evicting temporaries out of the
callee-saved registers. Since this algorithm does not avoid
unnecessary stores, costly spill code is inserted inside the
loop. The other class of applications, exemplified by eqn-
tott, has almost identical performance under two-pass bin-
packing and second-chance binpacking (2783984589 vs.
2782873030 dynamic instructions). The eqntott benchmark
spends a vast majority of its time in the procedure cmppt(),
which contains a very small number of temporaries and
therefore requires no spilling.

3.2 Compile times

To evaluate the compilation speed of the two methods, we
timed both on representative modules from the benchmark
set. Table 3 shows results obtained by timing only the core
parts of the allocators on a lightly-loaded Alpha. In particu-
lar, we record the time of day after setup activities common
to both allocators, such as CFG construction, loop analysis,
liveness analysis, etc., and then record the time of day again
after allocation. The difference in these two recorded times
is summed over all procedures in a compiled module to pro-
duce the times in Table 3. Each is the best of five consecu-
tive runs. The table also includes the average number of
register candidates per procedure in the module and the
average number of edges in their interference graphs.

While the coloring allocator is actually faster on small prob-
lems, its performance rapidly becomes worse on programs
with lots of competing register candidates. These numbers
illustrate that a coloring allocator slows down significantly
as the complexity of the interference graph increases.

4 Related work

The phrase “linear scan” was used by the developers of the
‘C dynamic code generator to describe the register allocator
in their system [13]. Having tried graph coloring, they
developed a simpler method that scans a sorted list of the
lifetimes and at each step considers how many lifetimes are
currently active and thus in competition for the available
registers. When there are too many active lifetimes to fit, the
longest active lifetime is spilled to memory and the scan
proceeds. No attempt is made to take advantage of lifetime
holes or to allocate partial lifetimes. Nevertheless, in con-
text of a run-time code generator, the improvement in com-
pilation speed obtained by using linear scan instead of
coloring justifies a modest decrease in run-time speed.

Digital Equipment Corporation has used a linear-scan algo-
rithm for many years in the GEM optimizing code genera-
tor, a compiler back-end used in several of its compiler
products [1]. The GEM approach to binpacking and treat-
ment of lifetime holes [3] was the starting point for our
work on linear-scan allocation. Binpacking evolved from
work done in the production quality compiler-compiler
project at CMU [11,17]. However, the discovery of linear-
scan register allocation at Digital was almost an accident: its
first implementation was intended as a “throw-away” mod-
ule, meant to be replaced by a more elaborate scheme.
When the throw-away turned out to perform better than its
more complicated replacement, it was shipped with the
product instead [9].

Digital’s allocator uses “history preferencing”, which
allows load instructions to be omitted by remembering
which values in memory are mirrored in registers. Our sec-
ond chance method subsumes history preferencing and adds
the dual optimization of avoiding a store instruction when a
register’s value can be shown to exist in memory already or
never be needed in memory again.

Laurie Hendren and a group from McGill University have
experimented with an alternative representation for interfer-
ence graphs which they call cyclic interval graphs [8]. This
data structure provides more fine grain information about
the overlap between two temporary lifetimes, especially
those extending around a loop. Hendren’s algorithm covers
points of maximal pressure with a fat cover, a set of non-
overlapping intervals that can fit into one register. This idea
is very similar to binpacking. Hendren also introduces the
concept of a chameleon interval, a temporary that is
assigned different colors, or registers, at different points in
its lifetime.

In his recent book, Bob Morgan presents a hybrid approach
to register allocation [12]. He first runs a limiting pass
which reduces the register pressure by introducing spill
code for temporaries that are live through loops. He then
runs his register allocator in three phases: he starts by using
graph-coloring to allocate temporaries that are live across
basic blocks. He then uses Hendren’s representation and
algorithm to allocate those local temporaries that can
occupy the same registers as the global temporaries. His
final phase uses a standard local algorithm to allocate the
purely local temporaries.

Module
(Benchmark)

Average number of Allocation time (sec)

Register
candidates

Interference graph
edges

Graph coloring
Second-chance

binpacking

cvrin.c (espresso) 245 1061 0.4 1.5

twldrv.f (fpppp) 6218 51796 8.8 3.7

fpppp.f (fpppp) 6697 116926 15.8 4.5

Table 3: A comparison of the allocation times. The average number of register candidates and interference graph edges refer to
the coloring allocator. These numbers cover all coloring iterations.

10

5 Conclusions

Linear-scan methods of register allocation are fast and
effective. They can enable the interprocedural optimization
of large programs, and they are appropriate for run-time
code generation. They avoid the risk of the compile-time
performance degradation that graph-coloring methods suf-
fer on certain program inputs.

We have presented and studied a new implementation of lin-
ear-scan, called second-chance binpacking. This approach
performs register allocation and instruction rewriting in a
single pass, and it pays more attention to spill code minimi-
zation than other linear-scan approaches. We have made a
fair comparison of this new method with a well-designed
coloring algorithm and found linear scan to be competitive
in output quality and much less prone to slow down on com-
plex inputs. We believe there remain ways of tuning the sec-
ond-chance binpacking algorithm so that the run-time
performance of generated code more uniformly matches
that of a coloring allocator.

6 Acknowledgments

We are grateful to Steve Hobbs, Bob Morgan, and August
Reinig of Digital Equipment Corporation for their helpful
discussions on the use of binpacking in the GEM compiler.
We would also like to thank Max Poletto of MIT for his
explanation of the use of linear scan in dynamic code gener-
ation.

This research was funded in part by a NSF Young Investiga-
tor award (grant no. CCR-9457779), a DARPA grant no.
NDA904-97-C-0225, and research gifts from AMD, Digital
Equipment, HP, Intel, and Microsoft.

7 References

[1] D. S. Blickstein, P. W. Craig, C. S. Davidson, R. N.
Faiman, K. D. Glossop, R. P. Grove, S. O. Hobbs and W. B.
Noyce, “The GEM Optimizing Compiler System,” Digital
Equipment Corporation Technical Journal, 4(4):121–135,
1992.

[2] P. Briggs, K. Cooper, and L. Torczon, “Improvements
to Graph Coloring Register Allocation,” ACM Transactions
on Programming Languages and Systems, 16(3):428–455,
May 1994.

[3] C. K. Burmeister, K. W. Harris, W. B. Noyce and S.
O. Hobbs, U.S. patent number 5,339,428.

[4] G. Chaitin et al., “Register Allocation via Coloring,”
Computer Languages, 6, pp. 47–57, 1981.

[5] G. J. Chaitin, “Register Allocation and Spilling via
Graph Coloring,” SIGPLAN Notices, 17(6):201–107, June
1982.

[6] M. F. Fernandez, “Simple and Effective Link-time
Optimization of Modula-3 Programs,” SIGPLAN Notices,
30(6):103–115, June 1995.

[7] L. George and A. Appel, “Iterated Register Coalesc-
ing,” ACM Transactions on Programming Languages and
Systems, 18(3):300–324, May 1996.

[8] L. J. Hendren, G. R. Gao, E. R. Altman and C. Muk-
erji, “A Register Allocation Framework Based on Hierar-
chical Cyclic Interval Graphs,” Proc. 4th International
Compiler Construction Conference, pp. 176–191, October
1992.

[9] S. O. Hobbs, Personal communication, July 1997.

[10] U. Hoeltze, “Adaptive Optimization for Self: Recon-
ciling High Performance with Exploratory Programming,”
Ph.D. thesis, Stanford University, March 1995.

[11] B. Leverett, “Register Allocation in Optimizing Com-
pilers,” Ph.D. thesis, CMU-CS-81-103, Carnegie-Mellon
University, February 1981.

[12] R. Morgan, Building an Optimizing Compiler, Digital
Press, Boston, 1998.

[13] M. Poletto, D. R. Engler and M. F. Kaashoek, “tcc: a
System for Fast, Flexible and High-level Dynamic Code
Generation,” SIGPLAN Notices, 32(5):109–121, May 1997.

[14] M. Smith, “Extending SUIF for Machine-dependent
Optimizations,” Proc. First SUIF Compiler Workshop,
Stanford, CA, pp. 14–25, January 1996. URL: http://
www.eecs.harvard.edu/machsuif.

[15] D. W. Wall, “Global Register Allocation at Link
Time,” SIGPLAN Notices, 21(7):264–275, July 1986.

[16] R. Wilson et al., “SUIF: An Infrastructure for
Research on Parallelizing and Optimizing Compilers,”
ACM SIGPLAN Notices, 29 (1994), pp. 31–37. URL: http://
suif.stanford.edu.

[17] W. Wulf, R. K. Johnsson, C. B. Weinstock, S. O.
Hobbs and C. M. Geschke, The Design of an Optimizing
Compiler, American Elsevier, New York, 1975.

